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Abstract 

 

General Aviation (GA) is the foundation of most flying activities and the training ground for 

civilian pilots, both recreational and professional. However, the safety record for GA is 

lacking compared to that of commercial aviation. Approximately 75% of accidents each year 

involve personnel factors, that is, even if the pilot was not the cause of the accident, they 

could have done something to either prevent it or improve the outcome.  

In this research, I aim to improve GA safety through safety-driven post-flight debrief that 

encourages pilots to consider the risk in their flights and identify behavioral changes that 

could make their flying safer. Providing pilots with a debrief tool that they can use with or 

without a flight instructor requires that we know both what to communicate, and how to 

communicate it. Risk communication heuristics and biases have not been researched in the 

context of aviation and flight training and we therefore do not know how pilots understand 

or respond to debrief. 

To achieve the goals of this work, I used a three-step process: (1) identify events that may 

put the safe outcome of a flight at risk, (2) detect those events in flight data, and (3) inform 

the pilot in a way that helps them improve in their future flights. I use a state-based 

representation of historical aviation accidents to define a list of events or behaviors that need 

to be communicated to the pilots, in the form of states and triggers. I use flight data to 

retrospectively detect these behaviors upon completion of the flight, by mapping parameters 

or combinations of parameters that can be calculated and tracked in the flight data to the 

hazardous states and triggers defined. To present these events to pilots, I created a prototype 

interactive debrief tool with risk information that I use in a survey to evaluate the 

effectiveness of feedback in different representation formats. Specifically, I evaluate the 

impact of three factors: representation method (graphical and numerical), parameter type 

(safety and performance parameters), and framing language (risk-centric and safety-

centric).  

I disseminated the survey via aviation mailing lists, type groups, flying clubs, and flight 

training providers, end received 268 responses. The survey analysis showed that the 
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feedback representation does affect its effectiveness in terms of risk perception, but not 

when it comes to pilots’ motivation to change. The lessons learnt from this survey can be 

used in creating additional surveys that delve further into risk communication biases and 

our understanding of how pilots perceive risk and feedback.   
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1. Introduction  

The goal of this work is to improve GA safety proactively by providing pilots with feedback 

that will guide them towards improvements in their future flights. This Chapter motivates 

the current research and discusses past research upon which build my work.   

1.1 Background and Motivation 

Aviation is a fast-growing industry, with IATA expecting that air passengers will double to 

7.8 billion in 2036 (IATA, 2017). The FAA forecasts an average 1.9% U.S. carrier passenger 

growth over the next 20 years (FAA, 2018). The increasing demand for air travel is creating 

an increasing need for pilots—Boeing (2018) reports that North America alone will require 

206,000 new pilots, with 790,000 new pilots required worldwide. General Aviation (GA), the 

foundation of most flying activities, is usually the starting point for new pilots, both 

recreational and professional, while they are undergoing their initial training. While the FAA 

forecasts that the GA turbine and rotorcraft fleets will grow, they also forecast that the fixed-

wing piston GA aircraft fleet will shrink at an average annual rate of −0.8%, as a result of the 

increasing cost of aircraft ownership and an aging fleet. The light-sport-aircraft category, 

however, is forecast to grow at an annual rate of 3.6% (FAA, 2018). When it comes to the 

pilot population, the FAA projects that the number of active GA pilots will decrease by 

~22,600 pilots, whereas the Airline Transport Pilot (ATP) category is expected to increase 

by the same number. Stakeholders in aviation have voiced concerns that the supply of 

available and qualified pilots is inadequate to support the current or future demand from 

U.S. airlines, both at the regional and mainline level, resulting in a need to reduce flights or 

eliminate routes to some markets (U.S. GAO, 2018). The urgent need for more pilots at the 

regional airline level is creating a deficit in the number of flight instructors available to train 

new pilots and therefore the time they have available to spend with students, making it 

difficult for the industry to meet future needs in terms of growth and safety rates.  

To keep up with the demand for new pilots amidst the economic obstacles, we need to train 

a higher number of pilots faster, which could result in compromised safety. Even though GA 

safety has improved over the past years, several hundred pilots still lose their lives in GA 

accidents each year. In 2017, fixed-wing GA had a total of 966 accidents, 167 of them fatal 
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(AOPA Air Safety Institute, 2018). Figure 1 and Figure 2 show accident trends for non-

commercial fixed-wing GA and commercial fixed-wing GA for the past ten years. If the 

number of operations increases to accommodate for the higher projected demand, we can 

expect to see more accidents and more fatalities if the accident rate remains constant, 

making GA safety a pressing concern.  

Risk management is a decision-making process used to identify hazards systematically, 

assess the degree of risk, and determine the best course of action. While everything involves 

risk, unnecessary risk that has no possible benefit should not be accepted (FAA, 2008). The 

level of risk is most often characterized in terms of severity and probability, where severity 

refers to the consequences of an event occurring, and probability is the likelihood of the 

event. Risk includes identified risks, which have been determined and can therefore be 

mitigated, and unidentified risks, some of which become identified if an accident or incident 

happens, and some of which are never known. The level of risk may vary for each pilot, 

depending on their experience level and certifications. For example, a flight in Marginal VFR 

(MVFR) conditions may be risky for a VFR pilot, since the conditions might become 

Instrument Meteorological Conditions (IMC) during the flight. However, for an IFR pilot, the 

same flight may not be as risky, since they have the training to complete the flight, even if 

IMC occurs. 
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Figure 1: Non-commercial GA results in approximately ten times as many accidents as 
commercial GA. Although there is a large decline in 2013 for non-commercial GA, the number 
of accidents has remained stable since then. Adapted from (AOPA Air Safety Institute, 2018).   

 

Figure 2: The FAA provides estimates for the number of hours the fleet flew under each 
operation category per year. We can use those numbers to calculate accident rates per 100,000 
flight hours. We observe that non-commercial GA still ranks higher than commercial GA in 
terms of how many accidents they encounter. Adapted from (AOPA Air Safety Institute, 2018).  
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There are multiple approaches to improving safety in aviation, spanning aircraft and pilot 

certification, aircraft technology, operation, and regulation. Angle of attack indicators, for 

example, were designed to help prevent stalls and improve approach by providing a visual 

representation of the lift. Ballistic recovery systems for small airplanes take control away 

from the pilot and lower the aircraft to the ground, decreasing fatality in parachute-equipped 

aircraft accidents (Alaziz et al., 2017). A lot of the advancements to aviation safety were the 

result of NTSB recommendations after accidents. The NTSB has issued over 5000 aviation-

related safety recommendations since its beginning (Sumwalt & Dalton, 2014). To 

understand the causes of accidents and incidents, the FAA uses data reactively (after the 

incident) while implementing a proactive approach (the Safety Management System (SMS) 

approach) where safety personnel analyze data and identifies and mitigates risks before they 

result in accidents. The FAA began implementing the SMS approach in 2005 to analyze 

aviation safety data and identify conditions that may lead to accidents/incidents, and 

mitigate the risks through changes to organization, processes, management, and culture 

(Dillingham, 2013). When it comes to GA, there are challenges that incumber the FAA’s 

efforts to assess and improve safety. The GA fleet, which makes up for 90% of the U.S. civil 

aircraft fleet, is very diverse, with more than 220,000 aircraft in the active GA fleet. The FAA 

is also faced with GA data limitations; estimates of annual GA flight hours may be unreliable 

(for example, there is no data provided for 2011, making it impossible to calculate accident 

rates for that year, as shown in Figure 2), and information on GA pilots in inadequate. The 

FAA is therefore unable to determine the effect of training on pilot behavior and competence, 

or link training to the likelihood of an accident (Dillingham, 2013). 

Recent advances in flight training technology provide opportunities to rethink training 

operations in terms of efficiency and safety. All civilian flight students undergo their initial 

pilot training in a school that falls into one of three categories: collegiate aviation, non-

collegiate vocational pilot school, or instructor-based pilot school. Collegiate aviation schools 

offer a 2- or 4-year undergraduate degree in an aviation major along with the commercial 

pilot certificates and ratings. Vocational pilot schools are very structured in their training 

sequence and curriculum. Instructor-based schools are more flexible, and the training 

sequence and curriculum depends on the student’s needs. All pilots must adhere to the same 
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certification standards independently of the type of training they undertook. One of the key 

challenges of collegiate aviation schools is the recruitment and retention of flight instructors. 

Collegiate flight programs implement new technologies that help them align their training 

with airline operations (Babb, 2017). As a result, collegiate fleets tend to be equipped with 

Flight Data Recorders (FDRs) and SMS programs, with a streamlined electronic dispatch 

program and use of Electronic Flight Bags (EFB) so that the school can keep track of the flight 

operations. When trying to improve the efficiency and effectiveness of flight training 

operations, we can use the technology that pilots have in the aircraft with them.  

Airlines use Flight Operational Quality Assurance (FOQA) programs to attempt to improve 

both the safety and efficiency of their operations. FOQA programs analyze exceedances, 

which are deviations from defined expectations (Chidester, 2003). If an airplane is equipped 

with flight data monitoring equipment, the FOQA program will point out if any parameters 

exceeded boundary values (Veillette, 2014). Implementing a similar program in GA may 

improve safety and operational performance, maintenance procedures, and flight training 

(Mitchell et al., 2007). The NTSB highlighted the need to expand the use of recorders to 

enhance transportation safety in 2016 (NTSB, 2016). Avionics in the GA fleet are not as 

advanced as those in commercial airliners. The size, weight, and cost of FDRs has precluded 

their use in GA in the past. Now, with improvements in technology, more and more small 

aircraft are equipped with FDRs and glass cockpit displays. Smartphones and tablets have 

made their way into the cockpit through EFB applications that help pilots with flight 

planning and resource management. Therefore, even in aircraft that are not fully equipped, 

we can still record some information about the flight. We can use the flight data to 

proactively improve GA safety both on an individual and community level by detecting 

unsafe behaviors, instead of reactively making improvements based on lessons learned from 

aviation accidents. Using multiple sources of data from equipment available would help 

address some of the challenges the FAA is facing pertaining to flight information data.  

Flight schools are trying to move to a more data-centric instructional approach. Utah State 

University uses the avionics suite on their fleet to record and monitor flight data that they 

then use for training and safety. When flight data indicates that any flight exceeded 

limitations five or more times during a flight, the student and instructor are required to meet 
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with the safety committee for remedial training (Utah State University, 2017). There is an 

opportunity for flight instructors to use the data capabilities of aircraft in post-flight debrief 

and objective evaluation. Commercial products that take advantage of the addition of 

technology in the flight decks of small aircraft to collect flight data and present pilots with a 

visualization of their flights, like CloudAhoy and CirrusReports, are becoming more 

prevalent in debrief.  

At the same time, many GA pilots are flying recreationally and do not have the same 

resources as pilots who are still pursuing flight training or professional pilots. After they 

complete the necessary level of training, recreational pilots are no longer flying with an 

instructor. Instead, they are potentially flying as the most experienced pilot in the aircraft, 

and often the sole pilot. We can use flight data to continue providing pilots with debrief, like 

they would if they were still pursuing flight training. A good debrief “allows individuals to 

discuss individual and team-level performance, identify errors made, and develop a plan to 

improve their next performance” (Salas et al., 2008) so, by eliminating the debrief aspect of 

flying, we are removing the continuous learning from the flight experience. The natural order 

of human processing consists of experiencing something, then reflecting on it, followed by 

discussing the event with others, before learning from it and modifying behaviors (Fanning 

& Gaba, 2007). Although pilots may naturally reflect after a flight where they learnt 

something (satisfying the reflection aspect of debrief), it will likely not be systematic, and it 

may not occur at all, depending on the pilot’s ability to focus. Debrief may move through 

three stages: description, analysis, and application. Without a facilitator (in this case, a flight 

instructor) it may be hard to move on from the description phase (Fanning & Gaba, 2007). 

Debrief, as a learning tool, is designed as a systematic approach to reflection and discussion, 

and has been shown to improve performance (Tannenbaum & Cerasoli, 2013).  

One potential way to improve GA safety would therefore be to continue providing pilots with 

debrief and feedback on their flying even beyond their flight training period, to encourage 

them to analyze their flights in more detail and learn from events in the flight. In the absence 

of a flight instructor, debrief has to be driven by flight data. Ideally, debrief tools can help the 

“post-instructor” pilot get a debrief like what they would be getting with an instructor. At the 

same time, research directed towards the development of such tools may also make flight 
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training more efficient, by giving instructors a data-driven approach to help guide their 

debrief conversation. Commercial debrief products, such as CloudAhoy, focus on flight 

visualization and refrain from any discussion of risk, flight safety, or performance. By not 

discussing significant elements of the flight, such as safety, and focusing instead on 

visualization, they may not be pushing pilots towards the application stage of debrief. 

O’Hare’s Aeronautical Risk Judgment Questionnaire (ARJQ) showed that pilots displayed low 

levels of risk and hazard awareness, and an optimistic self-appraisal of their abilities (O'Hare, 

1990), suggesting that pilots are likely to dismiss their own risk as being inconsequential. 

For example, if a pilot practices a maneuver on a solo flight while collecting data, and tries to 

visualize the maneuver after landing, using a product like CloudAhoy, they may not realize 

the extent of their own mistakes or the risk in their flight. To manage risk, pilots need to 

perceive the risk associated with a situation or hazard, and decide whether they are willing 

to accept this amount of risk in this situation (Hunter, 2002). Safety-driven post-flight 

feedback may help facilitate risk management in subsequent flights, by alerting pilots to 

potentially hazardous situations. However, we do not know how pilots respond to debrief or 

whether different formats affect their response. 

1.2 Research and Thesis Outline 

In this research, to help address the need for safer pilots, I take a quantitative approach to 

evaluating whether the presentation format used in the risk communication part of debrief 

matters among pilots in terms of how they perceive it. Providing pilots with a debrief tool 

that they can use with or without a flight instructor requires that we know (1) what to 

communicate, and (2) how to communicate it. To achieve this goal, I used a three-step 

process: (1) identify events that may put the safe outcome of a flight at risk, (2) detect those 

events in flight data, and (3) inform the pilot in a way that helps them improve in their future 

flights. To evaluate how to best inform the pilot of their unsafe events, I created a survey that 

I disseminated among pilots. The survey allows pilots to use a prototype tool that consists of 

modified CloudAhoy screens and evaluate the effectiveness of debrief feedback in each case. 

While this research addresses a small part of the bigger problem, it provides a starting point 

where we can build the rest of the work required in providing pilots of different aircraft and 

of various skill levels debrief opportunities that may keep them safer.  
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Figure 3 shows the three different parts of this work with their different sub-tasks.  

 

Figure 3: This research is divided in three sections. The accident analysis section identified 
events that tend to appear in accidents. Flight data analysis then aimed to detect these events 
in flight data. In this research, I mainly used Garmin G1000 flight data. The last section, risk 
communication, evaluated how to best communicate risk information to pilots through a 
debrief survey disseminated among different aviation groups. 

In this thesis, structured as follows, I focus on how we can use different sources of data to 

make the most of what is available in GA in proactively communicating risk information to 

pilots.   

Chapter 1 has introduced the challenges in GA safety and how they affect the research.  

The purpose of Chapter 2 is to describe the flight data that I use and explain how we can 

counteract some of the challenges with data quality or quantity.  

Chapter 3 maps introduces the hazardous state model and maps accident information, in the 

form of hazardous states and triggers, to events and parameters that we can calculate and 

detect in various forms of flight data.  

I use a state-based representation of historical aviation accidents to define a list of events or 

behaviors that need to be communicated to the pilots, in the form of states and triggers. Each 

flight consists of states, nominal or hazardous, and trigger events (Rao, 2016). A state is a 

period of time during which the system, consisting of the aircraft and the pilot, exhibits a 

particular behavior, and a trigger is an event that causes the system to transition between 

two states. Hazardous states do not always result in accidents, but preventing the hazardous 
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states will also prevent the accident. In this research, I focused on the hazardous states that 

appear in accidents that occur during the takeoff phase of flight.  

I use flight data to detect these behaviors, or events, retrospectively upon completion of the 

flight, by mapping parameters or combinations of parameters that can be calculated and 

tracked in the flight data to the hazardous states and triggers defined.  

Chapters 4, 5, and 6 deal with the communication aspect of the work. Chapter 4 discusses 

the literature on flight debrief and cognitive biases in risk communication and introduces 

different debrief representations that I use to communicate information on hazardous states 

and triggers to pilots.  

Chapter 5 goes over the work in setting up an experiment to determine whether different 

representation methods affect how pilots perceive the feedback in their flights. I present any 

detected states to pilots in the form of post-flight debrief feedback, with the goal of using the 

information to improve performance on subsequent attempts of the same tasks. In this 

chapter, I created a prototype interactive debrief tool with risk information based on 

CloudAhoy screens. To evaluate the effectiveness of feedback in different representation 

formats, I used an anonymous web-based survey where a sample of pilots self-debrief flights 

with safety information presented in different ways and assess the risk of the flight in each 

case. The survey also asked the pilots how likely they are to make changes to their flying as 

a result of the information they reviewed, to evaluate feedback effectiveness in terms of 

motivation to change unsafe behaviors. I demonstrated this approach on the hazardous 

states that are specific to the takeoff phase of flight. In this Chapter, I also discuss survey 

design decisions and their potential implications on the results.  

Chapter 6 analyzes and discusses the results from a total of 268 survey responses and 

evaluates the effect of the different risk representations on risk perception and feedback 

effectiveness. I found that different presentation methods do impact risk perception. They 

survey asked pilots to debrief a total of three flights—the effects of the different presentation 

methods varied depending on the flight, suggesting that further work is needed to determine 

how to talk to pilots about the risk of their flights. 
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Chapter 7 concludes the work and summarizes the contributions of this research. It also 

provides suggestions for future work and highlights challenges and limitations in conducting 

survey work among pilots.  
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2. Flight Data 

In commercial aviation, flight data retrieved from FDRs, or “black boxes”, is used in 

investigations of accidents and incidents and in FOQA programs. In GA, flight data can come 

from smaller FDRs (which are usually embedded in glass cockpit displays), smartphones or 

tablets, and ADS-B, among other devices. While FDRs do not make accidents more survivable, 

they can help preserve the history of a flight so that we can learn from all flights. As discussed 

in Chapter 1, hazardous states do not necessarily result in an accident. We can therefore find 

such hazardous states in successful flights and learn from them in an attempt to prevent 

them before they result in an accident.  

In this chapter, I discuss different types of data that are available in aviation, and in GA in 

particular, both flight data as well as operating environment data. Flight data may consist of 

FDR data, smartphone data, or ADS-B data. Operating environment data includes weather, 

terrain, and airport information. I also present some of the data processing that can provide 

additional information, making the flight data source more useful. 

2.1 FDR Data 

Newer aircraft with glass cockpit displays usually come equipped with a Flight Data 

Recorder (FDR), which collects many parameters, depending on the aircraft. Owners of older 

aircraft may also choose to retrofit a glass cockpit display. Among the GA fleet, the most 

common glass cockpit displays are manufactured by Garmin, Avidyne, and Aspen. The 

Garmin G1000 (Figure 4) and Avidyne Entegra (Figure 5) are integrated flight instrument 

systems, composed of two display units, the primary flight display (PFD) and the multi-

function display (MFD), and are capable of recording flight data. Such displays come at a high 

cost, sometimes exceeding the value of the aircraft. Aircraft used in GA range widely in size 

and capabilities, and they vary in age. In 2014, the average age of all registered US GA aircraft 

was 36.7 years, with the average age of all piston single-engine aircraft being 44.8 years 

(GAMA, 2015). The more recent advancements in cockpit technology and avionics are 

therefore not always available in GA aircraft or to GA pilots. The aircraft used in GA come 

with different flight data collection capabilities, if any at all. The most simplistic or oldest GA 

aircraft do not come with any advanced avionics—some of them do not even have navigation 
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or communication radios. Of all new piston aircraft delivered in 2006, 89% are equipped 

with glass cockpits (GAMA, 2006). However, given the aging fleet, the GA aircraft that have 

the ability to collect FDR data still only make up a small portion of the fleet. The majority of 

GA aircraft therefore are not equipped with glass cockpit displays or FDR and cannot take 

advantage of any safety enhancements that rely on such technology. 

 

Figure 4: The Garmin G1000 is one of the most popular flight deck systems. The Primary Flight 
Display (PFD) on the left gives the pilot attitude and control information, such as altitude, 
heading, and airspeed (NextGA Aircraft, Inc., 2012). The Multi-Function Display (MFD) on the 
right can be adjusted to the pilot’s liking, but tends to display secondary reference information, 
such as engine data, navigation charts, flight plans, and procedures (Ray, 2013).  

 

Figure 5: The Avidyne Entegra is similar in functionality to the G1000 (Figure 4) but has a 
different user interface (Mindstar Aviation, 2016).  

Both Garmin and Avidyne make data collection convenient—a USB flash drive (for the 

Avidyne Entegra) or an SD card (for the G1000) transfer the data log from the FDRs on-board 

the aircraft to a computer. The G1000 logs flight data in a comma separated (CSV) file, with 



20 

the top rows dedicated to airframe, Garmin hardware and software information, and 

headers, as shown in the log excerpt in Figure 6. The data follows a tabular format at a 

frequency of 1Hz. Avidyne records data in a tab delimited text document, with the aircraft 

information in a two-column format. Avidyne also includes a legend which helps the user 

understand the format of the rest of the document, which is not as user-friendly as the 

G1000. The Avidyne parameters are grouped in nine sections: eTimeInService, ePilotSettings, 

AhrsAndRateData, eAirData, eFlightDirectorData, ePriNavDetails, PriNavDisplayBlockText, 

eGpsPositionAndTimeData, ePistonEnginesData, and eTurbineEnginesData. Each row in the data set 

consists of a time stamp, a data section identifier, which tells the user what records to expect 

in the row, and the values for the parameters belonging to that particular category. The 

frequency of the records in Avidyne systems varies depending on the data group. 

 

Figure 6: The G1000 FDR records a plethora of information in a tabular format at a frequency 
of 1Hz that we can use to characterize the safety of a flight. The number and type of parameters 
recorded depend on the interaction of the flight deck system with the aircraft.  

Table 18 in the Appendix shows a comprehensive list of both G1000 and Avidyne Entegra 

parameters as they appear in the respective flight data logs. Not all parameters are available 

for both systems. For example, the cylinder head temperatures, exhaust gas temperatures, 

and communication frequency, are not provided for aircraft equipped with Avidyne Entegra 

systems, while bug settings for fundamental instruments (such as altitude and heading bugs) 

and angle rates, among others, are not available with the G1000. Additionally, parameters 
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are expressed in different unit systems. For example, fuel flow is expressed in pounds per 

hour for Avidyne systems, but gallons per hour for G1000 systems. The Avidyne headers are 

also missing some of the unit specifications. 

Data logs may also differ for each aircraft. Aircraft differ in their capabilities and can 

therefore record more or fewer parameters. The simplest example of this is the addition of 

another engine, which would duplicate some of the parameters. In the G1000 data set, the 

parameters corresponding to each engine will be prefixed by E1, E2, etc. In the Avidyne 

Entegra data set, engines are referred to via the suffix L or R, meaning Left or Right engine.  

2.2 Smartphone Data 

Smartphones and tablets have made their way into the cockpit, and pilots use them to check 

the weather, file flight plans, navigate, and study procedures and checklists. The same 

devices can be used concurrently to record data. Some applications, such as Foreflight and 

MyFlightBook, already include navigation data recording capabilities. Depending on the 

sensors available on the smartphone or tablet, these devices can record navigation 

information (GPS coordinates, altitude, groundspeed, ground track) and attitude 

information (gyroscope, accelerometer, magnetometer sensor data converted to attitude 

and heading information). 

The data collected on a smartphone is only a subset of the data we can collect on an FDR, 

which affects the number of hazardous states and triggers that we can detect from it. 

Connecting smartphones and tablets to other portable devices, such as portable ADS-B in or 

portable AHRS units in combination with post-processing techniques can help provide 

additional data or make the current data more accurate (Chakraborty et al., 2019). 

2.3 ADS-B Data 

The FAA has issued a mandate requiring all aircraft operating near Class B airspace to be 

equipped with ADS-B Out by 2020, which can provide researchers with a plethora of flight 

data sets. ADS-B Out is a transponder that broadcasts aircraft parameters to ground-based 

towers and surrounding aircraft that are appropriately equipped. Unlike FDR and 
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Smartphone data, the pilot does not need to provide their ADS-B data—researchers are able 

to collect data online or using their own receivers.  

ADS-B provides position information (GPS coordinates and altitude), ground track and 

heading, and velocity (ground speed and vertical speed). As with the smartphone data, we 

can only detect a subset of the hazardous states and triggers using ADS-B data.  

Even though smartphone and ADS-B data is available on more aircraft than FDR data, it is 

not as complete and does not provide as much information as the FDR record would. As a 

result, it is not possible to use the smartphone or ADS-B data to detect all the possible states 

and triggers; the states that may appear in a smartphone or ADS-B dataset are rather a subset 

of the states that would appear in an FDR dataset of the same flight. The lack of information 

on some states may result in pilots assuming that they do not exist, suggesting that a given 

flight may look safer than it actually is.  

2.4 Operating Environment Information 

Other data sources make it possible to expand the flight data by adding information such as 

weather. FDR data includes navigation information, but no information on the surrounding 

area. For example, FDR data does not include the name or identifier of the departure or 

arrival airport for a flight, or the clearance from a given obstacle. We can expand the set of 

hazardous states that are detectable in FDR data during post-processing to add more fields. 

The Airports and Runways databases provide the coordinates of each airport in the US, 

coordinates for the start and end of each runway, as well as information on runway lengths, 

widths, elevation, type (asphalt, turf, etc.), and condition, among other parameters. The FAA 

maintains a Digital Obstacles File—a database of all known obstructions within the U.S. that 

includes coordinates, height above the ground and above sea level, and structure 

information. FDR datasets include wind information at each timestamp—smartphones and 

ADS-B are not able to provide that information. Glass cockpit displays provide true airspeed 

and heading through the aircraft sensors, and groundspeed and ground track from the GPS, 

and then calculate wind direction and velocity from the information they have available. 

Smartphones, tablets, and ADS-B do not have access to the aircraft sensors and therefore 
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cannot provide true airspeed. However, if we know the winds aloft at a particular location, 

we can calculate true airspeed using trigonometry. 

2.5 FDR Data Post-Processing 

Figure 7 shows a sequence of algorithms that post-process FDR data before it can go through 

flight analysis to detect any hazardous states and evaluate its risk in an automated 

progression.  

 

Figure 7: Independently from the source of raw data, all flight data has to go through a 
sequence of automated post-processing algorithms which output risk information to go into 
the pilot’s debrief.  

The first step is to unify the data format—even for data that comes from the same display, 

(e.g., Garmin G1000) the fields as well as their order depend on the aircraft on which the data 

was recorded as well as the hardware and software version on the display. Creating a unified 

data format is necessary to automate the algorithms that follow.  

Next, I add a field to the flight data that identifies the phase of flight that the aircraft was 

operating under at each timestamp (Goblet et al., 2015). The phase of flight identification is 

important for two reasons. First, it facilitates the addition of airport and runway information 

for departure and arrival airports in each flight, as well as any airports visited while en route. 

Second, some hazardous states and triggers are relevant for particular phases of flight—

deviation from the runway centerline is specific to the takeoff and landing phases of flight, 

whereas a low airspeed state is applicable for all phases of flight.  



24 

Table 1: The second step in data processing is to append each timestamp in the flight data with 
a phase of flight code, as described here (Goblet et al., 2015). There are nine unique codes 
corresponding to nine phases of flight that may appear in a flight.  

Phase of Flight Phase of Flight Code Definition 

Standing 2 
Any time before taxi or after arrival while the 
aircraft is stationary.  

Taxi 3 
The aircraft is moving on the ground prior to 
takeoff and after landing. 

Takeoff 4 
From the application of takeoff power, through 
rotation and to an altitude of 35 feet above 
runway elevation. 

Climb 5 
Any time the aircraft has a positive rate of climb 
for an extended period of time. 

Cruise 6 
The time period following the initial climb 
during which the aircraft is in level flight. 

Descent 7 
Any time before approach during which the 
aircraft has a negative rate of climb for an 
extended period of time. 

Approach 8 
From the point of pattern entry, or 1000 feet 
above the runway elevation, to the beginning of 
the landing flare. 

Landing/Touchdown 9 

From the beginning of the landing flare until the 
aircraft touches down and exits the landing 
runway, or comes to a stop on the runway, or 
when power is applied for takeoff, depending 
upon the intended action after landing. 

Go-around 10 

A Go-around is a situation where the pilot is 
about to make a touchdown but decides to 
apply full power before the landing gear 
touches the ground. 

 

Once I identify the phases of flight in each flight, I can parse the takeoffs and landings and 

detect the airports at which they occurred. I use the coordinates of a takeoff or landing point 

and designate a small bounding box around it. I then compare the dataset of airports and 

runways against the bounding box to see which runways the aircraft could possibly have 

used. Usually, only one runway happens to fall within the bounding box. Depending on the 

airport layout, however, if the starting points of two runways are located very close to each 

other, the algorithm may identify two possible runways. I compare the aircraft heading to 

the runway orientation to either confirm the choice of runway or choose the correct runway 

from the set of possible runways. In the case of an intersection departure, the algorithm may 
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detect the wrong runway, as is the case with aircraft taking off from the intersection of 

Runway 27L and Taxiway D at KOSU, where (now closed) Runway 32 also happens to begin, 

as shown in Figure 8. To correct this misidentification, the algorithm increases the tolerance 

on the bounding box until it finds a runway that corresponds to the appropriate heading. 

Figure 8 indicates the takeoff point in an orange dot and the beginning of each runway in a 

blue dot. The smaller bounding box that is centered on the takeoff point has to increase in 

tolerance until it includes a blue dot (the bigger bounding box). Once it identifies one correct 

departure or arrival runway, the algorithm saves information such as the runway length and 

width, runway heading, runway condition, and the airport identifier. 

The output of the automated algorithm progression shown in Figure 7 is an amended dataset 

for each flight that was processed, which includes the flight data information with fields in a 

specific order and with unique identifiers, the phase of flight information at each timestep, 

and information on the airport and runway used for each takeoff and each landing in the 

flight. 
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Figure 8: The Ohio State University airport’s layout (FAA, 2015) creates complications in the 
part of the algorithm that determines from which airport and runway the aircraft took off. If 
the aircraft takes off from the Runway 27L and Taxiway D intersection, the algorithm outputs 
Runway 32 as the takeoff runway. Additional checks therefore help confirm the runway 
selection.  
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3. Defining Hazardous States and Triggers 

Using flight data to proactively improve GA safety requires that we are able to (1) identify 

events that may put the safe outcome of a flight at risk, and (2) detect those events in the 

flight data and inform the pilot in a way that helps them improve in their future flights. There 

are different ways to retrieve useful information from flight data. Detecting exceedances in 

the data, for example, consists of applying limits (upper or lower) on different parameters in 

the flight data. Safety events are off-nominal operations, or deviations from normal flying 

conditions, that could lead to accidents (Fala & Marais, 2016). Where exceedances only 

consider independent parameters, safety events combine parameters to detect various off-

nominal events. For example, a bank angle of 40° is not an exceedance, and an airspeed of 

70 knots is not an exceedance, but a bank angle of 40° while at an airspeed of 70 knots is a 

safety event (Fala & Marais, 2016). Safety events can therefore provide more safety 

information from flight data than exceedances, however, they still only provide information 

on what happened. 

Anomaly detection can be used to support airline FOQA programs in the airlines by 

identifying anomalous flights without pre-defining parameter thresholds (Li et al., 2011). 

Cluster analysis algorithms are used to find patterns in datasets and detect when a particular 

flight differs from what has already been observed. A system that provides safety analysts 

with a list of flights that were tagged as anomalous together with the reasons that they were 

deemed anomalous can help safety experts discover human factors issues in aviation 

(Budalakoti et al., 2006). The variability and diversity in GA flights makes such a task more 

difficult; it is not always possible to have a “normal flight” pattern from which anomalous 

flights can differ. Anomaly detection can be useful on parts of the flight, such as the approach 

segment, or the pattern around different runways, where the timeseries can be normalized. 

As opposed to airline operations, which have pre-defined routes that aircraft follow, GA 

pilots operate at more airports, making routes more diverse and less populated. Under Visual 

Flight Rules (VFR) operations, in particular, GA pilots can choose their own form of 

navigation, meaning that they won’t always fly in a straight line directly from airport to 

airport. They may choose to alter their flight plan to avoid terrain or other traffic, or to find 
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a more scenic route. Lastly, anomaly detection in GA can identify flights that look different, 

which may not have a correlation with flights actually being unsafe.  

3.1 State-Based Flight Representation 

I model each accident or incident using a state-based representation. Each flight consists of 

states (nominal or hazardous), and trigger events. A state is a period of time during which 

the system, consisting of the aircraft and the pilot, exhibits a particular behavior, and a 

trigger is an event that causes the system to transition between two states (Rao, 2016). 

Not all flights that involve hazardous states will result in accidents—in fact, most of them 

will not. Figure 9 represents the state-based model of one such flight that transitioned to a 

hazardous state and back to a nominal state through a remedial action. A high pitch attitude 

can result in a flight in the slow airspeed state, which if not corrected, can result in an 

aerodynamic stall. If corrected, via a remedial action trigger, such as decreased pitch attitude, 

the flight can return to a nominal state.  

 

Figure 9: State-based flight model for safe landing. 

In the flight modeled in Figure 10, the pilot does not take remedial action, and therefore 

transitions to a stall state. Inadequate recovery from the stall can result in a collision with 

terrain accident. Most flights do not result in accidents. They are either nominal flights, which 

do not enter any hazardous states, or flights that enter hazardous states but successfully 

recover and land safely. Hazardous states that may result in accidents also show up in flights 

that recovered back to the nominal state. 
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Figure 10: State-based flight model for accident. 

Since accidents tend to be the result of hazardous states from which the flight never 

recovered, an analysis of historical accident data can help populate a list of states and 

triggers definitions. We can use historical accident data, as coded by the NTSB, to translate 

accident causes and factors into hazardous states and triggers. Another way to define 

additional hazardous states and triggers necessary to model flights is by using the pilot’s 

operating handbook as well as any manufacturer recommendations. For example, 

manufacturers require pilots to maintain an airspeed under a maximum airspeed threshold 

for each aircraft, to avoid aerodynamic flutter. Fast airspeed is therefore a candidate for a 

hazardous state. Our flight physics knowledge can also contribute to our collection of states 

and triggers. Exceeding the critical angle of attack is a trigger event that can result in an 

aerodynamic stall state. Lastly, we can implement surveys to obtain additional events that 

can contribute to the list of states and triggers. These surveys can ask flight instructors and 

experienced pilots who are active in the GA community for states and triggers that they think 

may result in accidents.  

Using historical accident data as a starting point for generating a list of hazardous states and 

triggers ensures that the considered events have the potential of being a factor in an accident, 

since they have already appeared in an accident. However, other sources of hazardous state 

definitions should not be discounted, as they allow us to detect situations that could 

potentially be problematic, even if they have not caused an issue yet. 

3.2 Potential Hazardous States During Takeoff 

In this research, I use the takeoff phase of flight to investigate the effect of representation on 

post-flight debrief. The takeoff phase of flight provides a good demonstration of the research 

because it includes a wide variety of hazardous states that capture decision making, aircraft 
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control, and performance. To generate a list of hazardous states and triggers that are of 

importance during the takeoff phase, I used the FAA Airman Certification Standards (ACS) in 

combination with the NTSB accident database. Several pilot actions contribute to a 

successful takeoff, including maintaining aircraft control while on the ground and above the 

runway, choosing the required engine settings, lifting off at the appropriate airspeed 

(rotation speed), and not veering off the runway. FAA Designated Pilot Examiners (DPE) use 

the ACS to evaluate student pilots (FAA, 2017). The certification standards for normal 

takeoffs are shown in Figure 11. To obtain the hazardous states and triggers applicable to 

the takeoff phase, I mapped the standards from the ACS to the initial list of hazardous states 

and triggers from the historical accident data. For example, Confirm takeoff power and proper 

engine and flight instrument indications prior to rotation, is mapped to the Insufficient takeoff 

power state. Table 2 lists the hazardous states and triggers that may be present during the 

takeoff phase and maps them to the corresponding standards from Figure 11. 
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Figure 11: Airman Certification Standards are designed to create consistent evaluation 
standards for pilots and examiners alike. The standards for normal takeoffs for a private pilot 
outline the risk management and flying skills that a private pilot candidate should be able to 
demonstrate when applying for their certificate (FAA, 2017).  
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Table 2: I identified a list of hazardous states and triggers from a subset of the NTSB database 
of accidents that occurred during the takeoff phase of flight. All of these states are already 
covered in the ACS. 

Hazardous State or Trigger ACS Mapping 

Insufficient takeoff distance remaining PA.IV.A.K1; PA.IV.A.R13 

Insufficient takeoff power PA.IV.A.K2; PA.IV.A.S7 

Tailwind takeoff PA.IV.A.K4; PA.IV.A.R4 

Takeoff in high crosswind PA.IV.A.K4; PA.IV.A.R2; PA.IV.A.S4 

Deviation from centerline PA.IV.A.S6; PA.IV.A.S12 

Inappropriate runway selection PA.IV.A.R1; PA.IV.A.S2 

Inadequate airspeed at rotation  PA.IV.A.S8 

High airspeed at rotation PA.IV.A.S8 

Takeoff from inappropriately short runway PA.IV.A.K.1; PA.IV.A.R.1; PA.IV.A.R.13 

3.3 Characterizing Hazardous States via Measurable Parameters 

Table 2 lists the hazardous states and triggers that may appear during takeoff. Each event 

described in Table 2 can become a hazardous state or trigger if the associated parameters 

that characterize it exceed a threshold. For example, not being on the centerline becomes 

dangerous when the deviation is significant enough to cause a runway excursion or a 

collision with objects on the runway environment, such as runway lights. There are different 

ways of determining what the thresholds for these events should be. 

The hazardous states in Table 2 can be identified either using flight data on its own, or in 

combination with other data. As discussed in Chapter 0, different sources of data have 

varying capabilities and may not be able to provide enough information for the complete set 

of hazardous states. Table 3 therefore shows the data required for each state, grouped 

according to how the parameters that characterize the state are calculated, assuming that 

the FDR data is available. Simple parameters are those that are extracted directly from raw 

flight data. For example, slow airspeed is a hazardous state that is characterized by a simple 

parameter, since airspeed is one of the parameters that is recorded by the FDR. Derived 

parameters are those that combine multiple simple parameters to make a new parameter. 

Pressure altitude is an example of a derived parameter, because it is based on three simple 



33 

parameters: true altitude, reference pressure, and outside air temperature. Multi-Source 

Parameters may depend on weather data sources, airport information, or obstacle databases. 

For example, proximity to obstacle cannot be detected from flight data alone, but I can detect 

it by accompanying the flight data with an obstacle database, such as the FAA’s Digital 

Obstacle File (DOF). The classification of each state may change depending on the type of 

flight data that is available. For example, the wind direction and velocity parameters are 

considered simple parameters when analyzing a Garmin G1000 dataset, but they could be 

derived parameters in a different kind of FDR, or even multi-source parameters when using 

smartphone data in combination with historical weather information to calculate them. 

Table 3: The hazardous states and triggers during takeoff can be grouped in three parameter 
types (simple, derived, and multi-source parameters) based on how I calculate them. 

Parameter group State/Trigger Additional data required 

Simple parameter 

Insufficient takeoff power N/A 

Inadequate airspeed at rotation N/A 

High airspeed at rotation N/A 

Derived parameter 
Tailwind takeoff N/A 

Takeoff in high crosswind N/A 

Multi-source parameter 
Insufficient takeoff distance remaining Airport/Runway database 

Deviation from centerline Airport/Runway database 

 

Each parameter that can be identified from data falls on a risk spectrum: sometimes a takeoff 

may occur in crosswinds that are slightly high (1 kt higher than recommended, for example), 

or in crosswinds that are much higher than recommended. Specifying how unsafe an event 

is, as opposed to just saying that it is unsafe, may help pilots understand the severity of their 

actions and therefore change them.  

The tables in the following pages describe the hazardous states listed in Table 4, discuss their 

possible outcomes, and explain the process of calculating the relevant parameters so that I 

detect them in flight data. Note that all processes described assume that I am starting with a 

processed dataset as described in Section 2.5. The table for each state comes in two parts: 

state definition and state detection. State definition describes the motivation behind 
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communicating the state to pilots by describing an accident where it appeared as a factor. 

State detection then discusses how to calculate parameters that can describe the state using 

different sources of data. Also note that the risk thresholds towards the end of the state 

detection tables are there for demonstrative purposes in this research—in flight, they can be 

highly dependent upon the pilot’s flight training and experience and the aircraft capabilities. 

For example, the Deviation from the centerline state has risk level thresholds that are 

calculated based on the wingspan of a Cessna 172 and would not necessarily apply for other 

types of aircraft. 

Table 4: The states presented here are adapted from Table 2 to exclude those that we cannot 
calculate from the flight data that is available right now. Each state has an associated table 
that describes how it is defined and calculated in more detail.  

State Pages Notes 

Insufficient takeoff power 33  

Inadequate/High airspeed at rotation 34  

Tailwind takeoff 35-36 These two states will be presented in unison in 
Chapters 3, 5, and 5. Takeoff in high crosswind 37-38 

Insufficient runway distance remaining at 
takeoff 

39-40 
This parameter aims to address the Takeoff 
from inappropriately short runway state and the 
PA.IV.A.K.1 and PA.IV.A.R.13 ACS standards. 

Deviation from centerline 41-42  
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State Definition: Insufficient takeoff power 

Severity 

Taking off with insufficient power limits the lift generated, resulting in an 

aircraft that may be unable to climb fast enough to clear obstacles. 

Insufficient power may be the result of mechanical issues, or the pilot 

having incorrect throttle/power settings. In carbureted engines, applying 

carburetor heat will also decrease performance.  

Accident 

Example 

(SEA88LA191) 

A flight in a Piper PA-28 resulted in an accident in Troutdale, OR, in 1988, 

after the pilot took off with insufficient power. The aircraft, unable to 

adequately climb, ended up in trees in a raspberry field, resulting in four 

injuries. The investigation revealed that the partial loss of engine power 

was a result of a mechanical failure in the exhaust carburetor system. 

Accident State-

Based Model 

 

State Detection: Insufficient takeoff power 

Parameter Engine RPM 

Type Simple parameter 

Data required • Engine RPM 

Risk levels 

Risk level 1: Engine RPM < 2300 

Risk level 2: Engine RPM < 2250 

Risk level 3: Engine RPM < 2200 
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State Definition: Inadequate/High airspeed at rotation 

Severity 

Inadequate airspeed at rotation may result in the aircraft getting out of 

ground effect prematurely and coming back down to the runway instead of 

climbing. Waiting until airspeed is too high to rotate can result in a late 

takeoff, with a decreased margin of safety, and an increased difficulty to 

maintain directional control. Increased airspeed also increases the amount 

of runway required to abort takeoff if needed. 

Accident 

Example 

(WPR14LA250) 

During the takeoff roll for a local flight in Alturas, CA, a Cessna 172RG 

became airborne momentarily without reaching rotation speed, and came 

back down to the runway. The pilot noticed that the takeoff roll was taking 

longer than usual, and decided to abort takeoff since the runway remaining 

was not enough to continue. The pilot reduced power, and both the pilot 

and the passenger applied the brakes, intentionally veering off the right 

side of the runway. The aircraft collided with a ditch and fence and nosed 

over. The NTSB attributed the accident to the aircraft’s inability to attain 

rotation speed. The pilot’s delayed decision to abort the takeoff also 

contributed to the accident.  

Accident State-

Based Model 

 

State Detection: Inadequate/High airspeed at rotation 

Parameter Airspeed 

Type Simple parameter 

Data required • Indicated Airspeed 

Risk levels 

Risk level 1: < 54 or > 56 

Risk level 2: < 50 or > 60 

Risk level 3: < 46 or > 64 
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State Definition: Tailwind takeoff 

Severity 

Taking off with a tailwind results in an increased groundspeed, 

which increases takeoff distance, and leads to inadequate 

runway remaining at rotation. The increased groundspeed and 

delayed rotation may result in the aircraft being unable to 

climb at a speed that ensures obstacle clearance. 

Accident Example 

(CEN14LA406) 

A Cessna Cardinal (177RG) collided with a tree line after an 

accidental tailwind takeoff in Manistee, MI, in 2014, resulting 

in four minor injuries. The flight instructor on board the 

aircraft reported that the weather station was inoperative 

during the preflight check, and used the airport’s windsock to 

select the appropriate runway for takeoff, which indicated a 

light and variable wind, primarily from the east. They decided 

to use runway 19, as their intended destination was towards 

that direction. They also used the short-field takeoff 

procedure for the takeoff, and took off with approximately 

1,000 ft of runway remaining. However, during the initial 

climb, the airplane lost airspeed and began to sink back 

towards the ground, touching down at the runway departure 

threshold and continuing into the tree line. After the accident, 

the flight instructor noted that the airport’s windsock 

indicated a north-northwest wind direction with wind gusts 

of 18-20 knots, resulting in a tailwind condition. The 

corresponding decrease in airspeed and the reduced climb 

gradient resulted in the aircraft being unable to continue the 

takeoff.  

Accident State-Based Model 
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State Detection: Tailwind takeoff 

Parameter Tailwind at takeoff 

Type Derived parameter 

Data required 

• Takeoff time 

• Wind velocity 

• Wind direction  

• Aircraft heading 

Calculation 

1. Identify the takeoff point in flight data 

2. Find the corresponding wind direction and wind speed. 

3. Calculate the tailwind component. 

𝑇𝑎𝑖𝑙𝑤𝑖𝑛𝑑 = 𝑤 cos 𝜃 

 

Risk levels 

Risk level 1: Tailwind component > 0 

Risk level 2: Tailwind component > 3 

Risk level 3: Tailwind component > 5 
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State Definition: Takeoff in high crosswind 

Severity 

Crosswind during landing and takeoff can require a lot of drift correction in 

low airspeed conditions, where the control surfaces are less effective. 

Different airplanes (and different pilots) have different capabilities to 

counteract the crosswind drift.   

Accident 

Example 

(GAA16CA227) 

When the pilot of an American Champion Scout, a tailwheel aircraft, 

attempted to take off in 18 knots of crosswind at Plainview, TX, the right 

wing dropped shortly after takeoff, followed by a drop in the left wing, 

which impacted the ground. The wind gusts exceeded the aircraft’s 

crosswind correction capabilities, resulting in the loss of directional 

control.  

Accident State-

Based Model 
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State Detection: Takeoff in high crosswind 

Parameter Crosswind at takeoff 

Type Derived parameter 

Data required 

• Takeoff time 

• Wind velocity 

• Wind direction  

• Aircraft heading 

Calculation 

1. Identify the takeoff point in flight data 

2. Find the corresponding wind direction and wind speed. 

3. Calculate the crosswind component. 

𝐶𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑 = 𝑤 sin 𝜃 

 

Risk levels 

Risk level 1: Crosswind component > 10 kts 

Risk level 2: Crosswind component > 15 kts 

Risk level 3: Crosswind component > 18 kts 

  



41 

State Definition: Insufficient runway distance remaining at takeoff 

Severity 

Taking off with insufficient runway remaining may lead to multiple 

problems:  

• If there are obstacles at the end of the runway, and the pilot uses up the 

entire runway to take off, the aircraft may not have enough 

time/distance to climb at an altitude that clears the obstacles at the end 

of the runway. 

• After a takeoff late down the runway, the pilot is left with less options 

should any mechanical problems occur. For example, if an aircraft takes 

off at the beginning of a runway, and the engine fails shortly after 

takeoff, the pilot could potentially land straight ahead on the remainder 

of the runway. However, if the aircraft takes off towards the end of the 

runway, the only option is to now find somewhere to land ahead of the 

runway, while also not having a lot of altitude to lose.  

Accident 

Example 

(ERA12LA314) 

In 2012, a student pilot flying a Piper Warrior, decided to do an intersection 

departure at Lake Wales Municipal Airport, knowing that he only needed 

800 ft of runway to take off. He applied full power and let the aircraft 

accelerate to a rotation speed of 63 knots before pulling on the control yoke 

to rotate. Seeing that the airplane was not rotating, the student decided to 

abort the takeoff. The CFI observing the student reported that the airplane 

became airborne for a few seconds only 3-4 ft above the runway. Unable to 

bring the airplane to a stop on the runway, the student pilot veered to the 

right and collided with bushes in a runway excursion. At the intersection, 

the student pilot had 1,000 ft of runway available.  

Accident State-

Based Model 
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State Detection: Insufficient runway distance remaining at takeoff 

Parameter Runway distance remaining 

Type 

Multi-source parameter 

• Flight data (FDR, Smartphone, or ADSB) 

• National Transportation Atlas’ Airport Runway Database (RITA, 2016) 

Data required 

From flight data: 

• GPS Coordinates at takeoff point 

From runway database: 

• GPS coordinates at the runway threshold on both ends of the runway 

• Runway length 

Calculation 

1. Identify the takeoff point in flight data 

2. Detect the airport and runway from which the aircraft took off by finding 

airports/runways that fall in a boundary box around the takeoff point 

3. Use GPS coordinates to calculate the distance between the takeoff point 

and the runway threshold 

4. Use the coordinates of the threshold of the runway at the two ends to 

find the centerline 

5. Project the distance from the threshold onto the centerline and correct 

for the Earth’s curvature (dx) 

6. Subtract the projected distance from the total runway length to obtain 

the Runway distance remaining 

 

Risk levels 

Risk level 1: Runway distance remaining < 2000 ft 

Risk level 2: Runway distance remaining < 1500 ft 

Risk level 3: Runway distance remaining < 1000 ft 
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State Definition: Deviation from centerline 

Severity 

Deviation from the runway is usually the result of insufficient rudder 

control while accelerating. As the pilot advances the throttle to full power, 

the left-turning tendencies of a single-engine airplane increase, requiring 

right rudder application to counteract them. Maintaining directional 

control on the runway is important both during the takeoff and landing 

phases.  

Accident 

Example 

(GAA16CA284) 

A pilot flying a Citabria, a tailwheel airplane, in Ferndale, MT, in 2016, 

drifted left of the runway centerline during his takeoff roll. He attempted to 

correct by applying right rudder, which resulted in the airplane slowing 

down, suggesting that the pilot was touching the brakes. The pilot released 

the right rudder to adjust his foot so that it would not touch the brake, and 

noticed that the airplane was quickly approaching the left edge of the 

runway. He decided to rotate early, but the airplane continued deviating 

towards the left, and ended up colliding with a hangar and catching fire. 

The NTSB reported that the cause of the accident was “the pilot's loss of 

directional control during takeoff, resulting in a decision to rotate early, 

and a collision with a hangar and subsequent fire.” 

Accident State-

Based Model 
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State Detection: Deviation from centerline 

Parameter Distance from centerline/Distance from runway edge 

Type 

Multi-source parameter 

• Flight data (FDR, Smartphone, or ADSB) 

• National Transportation Atlas’ Airport Runway Database (RITA, 2016) 

Data required 

From flight data: 

• GPS Coordinates at takeoff point 

From runway database: 

• GPS coordinates at the runway threshold on both ends of the runway 

• Runway width 

Calculation 

1. Identify the takeoff point in flight data 

2. Detect the airport and runway from which the aircraft took off by finding 

airports/runways that fall in a boundary box around the takeoff point 

3. Use GPS coordinates to calculate the distance between the takeoff point 

and the runway threshold 

4. Use the coordinates of the threshold of the runway at the two ends to 

find the centerline 

5. Project the distance from the threshold onto a line perpendicular to the 

centerline and correct for the Earth’s curvature (dy) to obtain the 

Distance from centerline 

6. Subtract the projected distance from the runway width to obtain the 

Distance from runway edge 

 

Risk levels 

(Cessna 172) 

Risk level 1: Centerline Deviation >  0.75 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18)   

Risk level 2: Centerline Deviation >  0.5 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18) 

Risk level 3: Centerline Deviation >  0.25 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18) 
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4. Presenting Pilots with Safety-Driven Feedback 

The third part of the research, as shown in Figure 3, deals with communicating hazardous 

states and triggers to pilots. Pilots are subject to cognitive biases that may affect their 

perception of risk and their behavior. This Chapter reviews the literature on decision making 

in aviation and how cognitive biases may impact post-flight debrief. I then introduce three 

factors which I investigate in this work in terms of their impact on feedback effectiveness.  

4.1 Aeronautical Decision Making (ADM) 

Accident statistics show that approximately 75% of accidents involve some kind of pilot 

error, suggesting that the pilot could have done something to avoid or stop the accident 

(AOPA Air Safety Institute, 2018). Aeronautical Decision Making (ADM) provides pilots with 

a structured and systematic approach to analyzing in-flight changes (FAA, 1991). ADM is 

defined as the ability to search for and establish the relevance of all available information 

regarding a flying situation, to specify alternative courses of action, and to determine the 

potential outcomes from each alternative course of action (Jensen et al., 1987). Jensen (1995) 

defines pilot judgment as “the mental process that we use in making decisions.” The terms 

judgment, decision making, and aeronautical decision making are used interchangeably in 

aviation human factors research (Hunter, 2003). Decision making is one of the most 

important factors in human performance in aviation (O'Hare, 2003) and decisional errors 

are one of the major causal factors of fatal accidents (Jensen & Benel, 1977; Shappell & 

Wiegmann, 1997). 
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Figure 12: O'Hare (2003) identified six components of decision making in his ARTFUL decision 
making model. The central process of risk assessment links situational awareness and planning. 
The risk associated with the current goal at the top is continually assessed until the risk 
becomes unacceptable, at which time the decision maker can come up with a new goal if time 
permits.  

Jensen and O’Hare have both studied and modeled aeronautical decision making and pilot 

judgement. O’Hare’s ARTFUL decision-making model suggests that a current goal will only 

be altered if the pilot’s situational awareness indicates a need for change, and there is time 

to generate a new goal, as shown in Figure 12 (O'Hare, 1992; O'Hare, 2003). Jensen’s Pilot 

Judgement Model is broken in two parts: rational judgment and motivational judgment 

(Jensen, 1995). Rational judgment is “the ability to discover and establish the relevance of all 

available information relating to problems of flight, to diagnose these problems, to specify 

alternative courses of action and to assess the risk associated with each alternative”, and 

motivational judgment is “the motivation to choose and execute a suitable course of action 

within the available time frame” (Jensen, 1995). Both O’Hare and Jensen have indicated that 

to help pilots improve their decision making, judgment, and flying habits, pilots should know 

and understand what they need to change, and why they should change it. For example, if 

the pilot is high on the approach to a runway, they first need to realize that their approach is 
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not good enough and identify what specifically is going wrong. They should then come up 

with a way to fix it, such as decreasing power, or pitching down more, depending on the flight 

variables, and then follow through with the plan to correct the approach. If they are too close 

to the runway, the approach may not be salvageable, in which case the “new goal” could be a 

go-around.  

To facilitate goal setting and decision making in aviation, flight instructors debrief the flight 

lesson after the flight, as discussed in next section.  

4.2 Flight Debrief 

During flight training, flight instructors use feedback, either during flight, or in a post-flight 

debrief, to communicate ways to improve performance or correct mistakes to their students. 

However, after a successful checkride, the now-licensed pilot no longer has an instructor or 

examiner by their side to talk to about their flight performance or safety, and they may not 

be aware (or want to acknowledge) that their actions during the flight could have resulted 

in an accident or incident. After they complete their initial training, some GA pilots continue 

their training towards more advanced certificates, while others continue flying 

recreationally, receiving only the minimum mandated training once every two years, which 

means they do not have easy access to organized feedback on their performance.  

Commercial products that take advantage of the addition of technology in the flight decks of 

small aircraft to collect flight data and present pilots with a visualization of their flights, like 

CloudAhoy and CirrusReports, are becoming more prevalent in debrief. Such products can 

integrate flight data with other aviation resources, such as a sectional chart or instrument 

approach procedure plate, to display information that helps the pilot visualize their flight 

after they land. This type of analysis is non-evaluative, in that it only displays an objective 

replay of the flight in different settings, with no commentary on flight performance. For 

example, Figure 13 and Figure 14 show screenshots of the debrief page of a flight, as 

recorded using a smartphone. Figure 13 gives the pilot an overview of the flight, and the pilot 

can then choose what specific part of the flight they want to debrief in Figure 14 (for example, 

the takeoff segment).  
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Figure 13: The Debrief screen on CloudAhoy presents pilots with an overview of their flight and 
allows them to choose how they want to view their flight in various windows. 

In Figure 14, the pilot can see the ground track and ground speed profile of their takeoff. 

However, there is no indication of the quality or safety of the takeoff. While products like 

CloudAhoy can be helpful in reviewing flights, both during and after formal training, they do 

not and are not meant to provide safety guidance. A good debrief, however, “allows 

individuals to discuss individual and team-level performance, identify errors made, and 

develop a plan to improve their next performance” (Salas et al., 2008), so, by eliminating the 

debrief aspect of flying, we are removing the continuous learning from the flight experience. 
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Figure 14: The CloudAhoy debrief algorithm separates the flight into segments so that the pilot 
can look at different flight portions individually, and tailors the information on the screens to 
that particular segment of flight. 

Various efforts are now underway to provide safety guidance. For example, MITRE’s GA 

Recording Device (GAARD) app records flight data from smartphone or tablet sensors to 

create a database of GA flight data (MITRE, 2014). The National General Aviation Flight 

Information Database (NGAFID) then allows the user to upload data, either from a Garmin 

G1000 FDR, or from the GAARD app, from a Cessna 172S or Cessna 182 airplane, and identify 

potential safety risks (NGAFID, 2017). While such products, services, and initiatives are in 

place to help pilots improve their flying, pilots who exhibit the anti-authority or 

invulnerability hazardous attitudes may dismiss them, or choose to justify their actions 

(FAA, 2016). For example, a pilot may dismiss feedback after observing that taking a 

particular unsafe action, such as taking off at a high airspeed, or cruising with a richer 

mixture than recommended, has not resulted in an accident or incident in their case. A 

researcher or regulator’s attempt to correct such behaviors in pilots that exhibit hazardous 
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attitudes might therefore appear alarmist to such pilots. However, as discussed in Chapter 3, 

hazardous states appear in flights that did not necessarily result in accidents, and a close 

escape on a particular occasion does not guarantee that such escapes are always possible. 

To manage risk, pilots need to perceive the risk associated with a situation or hazard, and 

decide whether they are willing to accept this amount of risk in this situation (Hunter, 2002). 

Safety-driven post-flight feedback may help facilitate risk management in subsequent flights, 

by alerting pilots to potentially hazardous situations.  

However, there has not been enough research on effective ways to debrief flights, or on how 

to communicate risk information to pilots. O’Hare’s (2003) work points out that "the effects 

of the Tversky and Kahneman (1974) work on decision heuristics and biases have been 

highly significant in a number of fields. Surprisingly, this has not been the case in research 

on aeronautical decision making." It is still not clear how pilots respond to debrief or how 

different formats within the debrief affect pilot response in terms of risk. In Section 4.3, I 

discuss cognitive biases from different fields that may be significant in aviation.  

4.3 Biases in Risk Communication 

Researchers in the fields of medicine, education, and sports, have studied biases to which 

humans are susceptible when given feedback. Physicians use different risk communication 

methods in attempts to convince their patients to change specific behaviors that could be 

hazardous to their health. Research in medicine aims to evaluate different formats of 

conveying health risks to patients. The intent of health risk messages is to increase perceived 

risk and motivate behavior change (Lipkus, 2007), similarly to how communicating risk to 

pilots aims to increase their understanding of risk and motivation to fly more safely. Coaches 

and teachers provide students with feedback so that they can improve their performance, 

while being careful not to hinder their progress.  

The language used in feedback messages may lead the recipient of the message towards 

particular conclusions and bias their understanding (National Research Council, 1989). 

Phrases that are different, but logically equivalent, can cause individuals to change their 

preferences. For example, a study of how patients consent to medical procedures by Gurm 

and Litaker (2000) showed that framing the risk involved in a medical procedure impacted 
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the patient’s likelihood to consent to the procedure. Regression toward the mean, the 

phenomenon describing that variables that are extreme on a first measurement tend to be 

closer to the average on the second measurement, may also play a role in how pilots perceive 

the feedback. Pilots who do well on a task are likely to do more poorly on a second attempt 

of the same task, regardless of whether the feedback they receive is positive or negative 

(Kahneman & Tversky, 1973). Flight instructors are conditioned to think that they are 

punished for rewarding their students and rewarded for punishing them, when they do not 

apply regression to the mean in their reasoning. The second attempt at a flight maneuver 

after making a severe mistake will likely be closer to the mean.  

Medical researchers have evaluated how numeric, verbal, and visual communication formats 

affect how likely patients are to change their behaviors. Numeric formats report the numbers 

of people affected by a behavior, or the probability of an event, verbal formats describe how 

the person involved is affected by a behavior, and visual formats present the numbers in 

graphs and diagrams. While the intent of each message is to communicate risk accurately 

and motivate behavior change, different communication formats may affect how pilots 

respond to feedback. 

Providing feedback recipients with a lot of information may result in information overload 

(National Research Council, 1989). As a result, people tend to desire simplicity and therefore 

prefer feedback to be categorized into distinct and polar groups, rather than following a 

continuous scale. This categorization fosters a demand for convincing proof in feedback, 

suggesting that telling people that something is unsafe is not sufficient. Feedback 

effectiveness also depends on how it treats uncertainty and whether it bases decisions on 

sound science or a “better safe than sorry” attitude. 

Numbers are often used in conjunction with statistical metrics to describe risk. Numeric 

formats appeal to people because they convey precision and accuracy. Numbers also tend to 

be perceived as more scientifically credible and can be verified for accuracy. People with low 

numeracy can have trouble understanding numerical metrics (Lipkus, 2007). 

Probabilistic information can be presented in different formats: probabilities, odds, 

percentages, and natural frequencies. Lipkus highlighted recommendations for using 
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numeric formats. People need a reference point that facilitates their understanding of risk. 

The reference point, according to Lipkus, can come in two forms: the risk of the flight 

resulting in an accident had the detected hazardous state or trigger not been present in the 

flight, and a comparison to the likelihood of a different event happening (such as the 

likelihood of being in a car accident). Numeric formats should be consistent: percentages 

should be compared to percentages, and odds to odds, and the denominator in each case 

should be the same (Lipkus, 2007). While comparing 5 out of 25 and 10 out of 100 may be 

easy for some users, other users who put emphasis on the denominator may perceive the 

risk differently (Paling, 2003). Small numbers approaching zero may be regarded as 

insignificant, and rounded numbers are more readily understood. 

4.4 Pilot Risk Perception Cognitive Biases 

The biases found in research in medicine and education may also be applicable to the GA 

pilot population. For example, assuming that pilot actions can be either safe or unsafe, to 

various degrees, we can describe a flight on two scales: based on how safe it was, or how 

unsafe it was. A flight that ranks high on the safety scale will rank low on the risk scale. While 

mathematically both scales are describing the same thing, pilots may perceive them 

differently. Risk compensation may result in pilots not taking any risk reduction measures 

after a flight that ranks high on the safety spectrum, whereas presenting the same flight as 

ranking low on a risk scale may motivate pilots to reduce their risk. At the same time, pilots 

may also classify a flight that is low on the risk scale (for example, 10% risky, or 90% safe) 

as a safe flight and dismiss the hazardous states that were present in the flight, since it was 

an overall safe flight. However, the actions pilots are motivated to take following feedback 

may differ depending on whether the feedback was framed on a safety scale or a risk scale.  

Based on the literature review on risk communication research in other disciplines, I focus 

this research on the three factors shown in Table 5, which may affect how pilots perceive 

their safety-driven feedback.  
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Table 5: In this research, I investigate three factors that may bias pilots in their perception of 
safety-driven feedback, based on a review of the risk communication literature. 

Factor Method description 

Language 
Risk-centric language and risk scales 

Safety-centric language and safety scales 

Representation 
method 

Graphical representations 

Numerical representations 

Parameter type 
Parameters that refer to the system’s safety 

Parameters that refer to the system’s performance 

 

The remainder of this Chapter discusses how these three factors may affect risk perception 

and feedback effectiveness and how they apply to the different takeoff phase of flight states 

from Chapter 3.  

4.4.1 Framing Language 

Using language to frame a flight’s risk may affect how pilots respond to their debrief 

feedback. Objectively, grading a flight on a risk scale (a 5-point Likert scale where 5 is 

extremely risky, for example) or a safety scale (with 5 being extremely safe) does not make 

a difference. Ranking a flight as a 4 on a 0 to 5 safety scale is mathematically the same as 

ranking the same flight as a 1 on a 0 to 5 risk scale. However, if the research on framing 

applies to the pilot population, pilots may respond more urgently to their feedback if they 

think of it in terms of risk, or if I present it to them using risk-centric language.  

4.4.2 Representation Method 

In medicine, doctors are cautious about using numerical methods to communicate risk to 

patients, as those methods rely upon the patient having adequate numeracy. However, the 

pilot population may be different than the patient population, since getting a pilot’s license 

requires them to take a written test that includes mathematical calculations. Pilots may also 

prefer the exactness of quantifiable measurements as opposed to the potential vagueness of 

graphical representations. Figure 15 applies a graphical and numerical representation 

method to the Inadequate runway distance remaining hazardous state as an example.  



54 

 

(a) (b) 

Figure 15: Screen (a) uses a graphical representation to show the user where on the runway 
the aircraft took off, whereas screen (b) uses numbers to tell the user how much runway they 
had remaining after the takeoff point. 

All states can be represented numerically or graphically. For example, Engine RPM can be 

stated as a peak value during the takeoff phase or plotted on a graph. Airspeed at rotation 

may be indicated on a picture of the airspeed indicator, and the wind components can be 

shown using arrows or wind sock pictures. 

4.4.3 Parameter Type 

Giving risk feedback to pilots on behaviors that may never result in an accident can result in 

them questioning and eventually ignoring the feedback. Some pilot behaviors may not be 

entirely risky in nature, but preventing them will still improve flying technique. For example, 

touching down further down a long runway is arguably not unsafe, if there is sufficient 

runway remaining to stop (and in some cases, it may even be preferable). However, on a 

shorter runway, landing further down the runway instead of closer to the beginning may 

result in a runway excursion if the aircraft does not have enough space to come to a stop. A 

pilot can still improve by landing closer to the beginning of the runway. Calling the second 

case a performance concern instead of a safety concern clarifies the intent of the feedback 

before the pilot demands proof that landing further down the runway is unsafe. Wording in 

behaviors that are not impacting flight safety with high certainty may therefore affect pilots’ 

willingness to make changes to their flying. For example, landing 2,000 ft from the beginning 
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of the runway is unsafe on a short runway but not unsafe on a long runway. Touching down 

1,000 ft from the end of the runway, however, is arguably unsafe in both cases. Figure 16 

displays information about the Insufficient runway remaining distance hazardous state 

framed in terms of safety and performance parameters. Measuring the distance remaining 

from the end of the runway informs the pilot how close they are to an unsafe situation, 

whereas measuring the distance actually used to take off tells them how close they were to 

the runway distance they calculated during their preflight based on the conditions.   

 

(a) (b) 

Figure 16: The performance parameter in the popup message in Screen (a) gives the pilot the 
actual takeoff distance, which is the performance parameter. Screen (b) uses a safety 
parameter to give the pilot the runway distance remaining at the takeoff point.  

Similarly, centerline deviation is a performance parameter since it measures the distance 

from the aircraft’s longitudinal axis to the runway centerline, whereas its complement, the 

distance measured from the runway edge, as shown in Figure 17, is a safety parameter.  



56 

 

Figure 17: Lateral deviation on the runway can be measured from two reference points: in the 
safety parameter case, it is a measure of distance from the runway edge to the aircraft. In the 
performance parameter case, the deviation is the distance from the runway centerline, 
commonly referred to as centerline deviation.  
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5. Experiment Design 

To evaluate whether pilots are susceptible to the biases described in Chapter 3, I designed a 

survey that I disseminated to pilots using various aviation mailing lists and groups. The 

survey asked pilots to self-debrief a set of three sample flights using modified CloudAhoy 

screenshots and assess each flight’s risk. This Chapter discusses the survey questions and 

dissemination, as well as the full-factorial experiment design that I used to evaluate the effect 

of each of the three factors described in Section 4.4.  

5.1 Survey Design and Dissemination 

The survey is web-based to maximize the number and diversity of potential respondents. An 

internet survey has the potential to collect data from a large and diverse sample of 

participants (Leong & Austin, 2006). A web survey gives access to individuals in distant 

locations or participants who may be otherwise difficult to reach (Wright, 2005). At the same 

time, though, web surveys also introduce biases. Self-selection bias results in a systematic 

bias, where some individuals are more likely than others to complete the survey, while 

others will tend to ignore the invitation to participate in the online survey. In my case, it is 

possible that self-selection bias will result in people who have a safety-mindset being more 

likely to respond to the survey. Nonresponse bias arises when the responses of individuals 

who take the survey differ from those of individuals who opt out. Such sampling issues 

inhibit our ability to generalize and estimate population parameters. However, the higher 

response rate of web-based surveys makes them less vulnerable to biases due to 

unrepresentative samples. In my case, a representative sample would consist of 

approximately 10% women, 40% private pilot license holders, and 25% commercial pilot 

license holders. 

The survey was disseminated via various aviation groups, newsletters, and mailing lists. The 

Curt Lewis and Associates Flight Safety Information newsletter is distributed daily to more 

than 36,000 subscribers and is tailored to people with an interest in aviation safety. The 

Partnership to Enhance General Aviation Safety, Accessibility, and Sustainability (PEGASAS) 

flight schools forwarded the survey to their students. Multiple social-media based groups of 

pilots, such as the FAA’s General Aviation Safety group also responded to the survey. I 
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encouraged snowball sampling by generating a constant survey link that respondents could 

forward to other pilots. Snowball sampling resulted in the survey being forwarded to flying 

clubs and the Ninety Nines. Overall, about 1,100 people accessed the survey introduction by 

clicking on the link.  

The survey consists of three main parts, as depicted in Figure 18. Each survey starts with an 

introduction and a tutorial, which shows the pilots how to use the debrief tool and explains 

the purpose of the survey. The survey ends with the Demographics section, which asks pilots 

demographic questions, to help identify whether pilots are biased differently depending on 

their characteristics and experiences. The Debrief randomizer segment of the survey, further 

explained in the following sections, assigns each respondent specific feedback 

representation methods in flights to debrief. All pilots received the same flights to debrief, 

but the representation method for each flight was randomized. Respondents were able to 

stop taking the survey at any point.  

 

Figure 18: The white blocks in the survey structure represent the parts of the survey that are 
the same for every respondent. The flight randomizer in the middle allows me to evaluate 
whether pilots have biases by showing them data in different formats in the flights they are 
evaluating.  

For each of the three flights, I created an interactive prototype debrief tool (Figure 19) using 

CloudAhoy screenshots and adding information on hazardous states. Respondents are able 

to interact with the screens to go back and forth between different displays, taking as much 

time as they need. The pilots have to pretend that this is a flight that they have just 
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completed, and they have to answer the questions posed based on the information on the 

screens alone. 
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Figure 19: Each flight has its own introduction and debrief screen, where pilots can interact 
with the debrief tool before continuing on to the questions. 
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5.2 Flights 

I chose three flights to create debrief screens out of a larger set, based on the number of 

hazardous states in each flight. All flights originated at The Ohio State University Airport 

(KOSU) and were in a Cessna 172, an aircraft that most pilots are familiar with.  

Flight A had four hazardous states—the aircraft rotated at a low airspeed while taking up 

too much of the runway, in a slight tailwind, and with a high centerline deviation. Flight B 

had a low Engine RPM and high airspeed at takeoff, but was otherwise safe. Flight C had a 

high centerline deviation and the takeoff took up too much of the runway. The airspeed at 

rotation was also slightly low. 

While the total risk of a flight cannot be measured with certainty, a simple risk metric is 

useful in comparing the three flights, as shown in Table 6. I model the identified flight risk as 

a function of the hazardous states and triggers that were detected in the flight data, using a 

simple additive weighted model. This risk metric depends on not only the number of states 

and triggers, but also on their severity. For example, being 1 kt faster than recommended is 

not as dangerous as being 10 kts faster. To account for the various levels of risk, I divide each 

hazardous state into j qualitative degrees of risk, R1, to Rj, in order of increasing severity. For 

example, deviating slightly from the runway centerline during takeoff but correcting for it 

quickly is a less hazardous state (R1), but if throughout the takeoff the aircraft is increasingly 

deviating from the centerline, getting close to the edge of the runway, without any 

corrections, it becomes a more severe hazardous state (Rj). 

I therefore model the total risk of a flight using Equation 1, where n is the total number of 

hazardous states and triggers that are being considered, j is the degree of risk for each 

hazardous state or trigger, k is the total number of risk levels chosen, and aj  is the weighting 

factor for each risk level. 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘 = ∑ ∑ 𝑎𝑗𝑅𝑗𝑖

𝑛

𝑖=1

𝑘

𝑗=1

 (1) 
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For the takeoff example, I consider five hazardous states and three risk levels, as shown in 

Equation 2, where a1 = 1, a2 = 3, and a3 = 5. These weighting factors increase the metric when 

higher risk hazards are present but still account for low risk hazards.  

𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑅𝑖𝑠𝑘 = ∑ ∑ 𝑎𝑗𝑅𝑗𝑖

5

𝑖=1

=

3

𝑗=1

∑ 𝑅1𝑖

5

𝑖=1

+ 3 ∑ 𝑅2𝑖

5

𝑖=1

+ 5 ∑ 𝑅3𝑖

5

𝑖=1

 (2) 

I then scale the risk metric so that it can take values from 0 to 10, with 10 being the safer end 

of the spectrum, and 0 describing an unsafe flight. As shown in Equation 3, I divide by the 

risk metric of a hypothetical flight where all possible hazardous states and triggers occurred 

at an R3 risk level.  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 = 10 − 10 ×
𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑅𝑖𝑠𝑘

5 ∑ 𝑅3𝑖
5
𝑖=1

 
(3) 

Table 6: I assigned scores of 1, 2, and 3 on the different hazardous states that were present in 
each flight based on how severe they were. Based on the final scaled safety metrics, Flight A is 
the riskiest one. 

State Flight A Flight B Flight C 

Insufficient takeoff power 0 1 0 

Inadequate/High airspeed at 
rotation 

3 5 1 

High tailwind or crosswind 
component 

1 0 0 

Insufficient runway distance 
remaining at takeoff 

3 0 3 

Deviation from centerline 3 0 3 

Total Takeoff Risk: 10 6 7 

Scaled Safety Metric: 6 7.6 7.2 

 

5.3 Debrief randomizer 

Table 5 lists the eight possible ways of communicating risk messages in my full-factorial 

design experiment. For example, a hazardous state can be communicated in a graphical or 
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numerical way. The two representations may bias the pilot differently, with one 

representation causing the pilot to think that a behavior is safer than another representation. 

Each factor in Table 5 has the potential to bias the pilot. Additionally, combinations of factors 

can affect pilots differently. For example, pilots may respond similarly to graphical and 

numerical methods, and risk-centric and safety-centric framing language methods, but at the 

same time respond differently to graphical methods that use risk-centric language. Table 7 

shows a 23 full-factorial design with two-way interactions between the factors outlined in 

Table 5. 

Table 7: Combinations of Factors to be Used in Risk Communication Messages 

Safety-centric 
language 

Representation 
Method 

Parameter Type Framing Language 

1: [+1 +1 +1] 
Graphical 

representation Performance parameter Safety-centric language 

2: [+1 +1 −1] 
Graphical 

representation Performance parameter Risk-centric language 

3: [−1 +1 +1] 
Numerical 

representation Performance parameter Safety-centric language 

4: [−1 +1 −1] 
Numerical 

representation Performance parameter Risk-centric language 

5: [+1 −1 +1] 
Graphical 

representation Safety parameter Safety-centric language 

6: [+1 −1 −1] 
Graphical 

representation Safety parameter Risk-centric language 

7: [−1 −1 +1] 
Numerical 

representation Safety parameter Safety-centric language 

8: [−1 −1 −1] 
Numerical 

representation Safety parameter Risk-centric language 

 

The debrief randomizer function will randomly assign each pilot who takes the survey to one 

of the eight groups in Table 7. For example, in the first treatment combination, the debrief 

consists of graphical representations that use safety-centric language, and they describe 

parameters that refer to the system’s performance, whereas in the last treatment 

combination, the debrief consists of are numerical representations that use risk-centric 

language and describe the safety of the system.  

The first two factors in Table 7 (representation type and parameter type) are used in the 

debrief screens and messages, and the third factor (framing language) is used in the survey 

questions (Section 5.4). 
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5.4 Survey Questions 

As discussed in Chapter 3, I evaluate feedback effectiveness based on two characteristics: the 

accuracy of the perceived risk, and the pilot’s willingness to change the identified unsafe 

behaviors.  

5.4.1 Perceived Risk 

The questions on the first post-debrief screen, shown in Figure 20, aim to address perceived 

risk. The first question, Given the information presented to you, how risky would you say this 

takeoff was? asks the pilot to rate the risk or safety of the flight on a 5-point Likert scale. 

Depending on whether the test is evaluating risk-centric language or safety-centric language, 

the question asks the pilots to use a risk scale or a safety scale, respectively. If different 

treatment combinations are affecting pilots’ risk perception, then there will be a difference 

in the response distribution for Question 1 among different combinations.  

The second question, In this takeoff, which of the following would concern you, if any? aims to 

investigate whether pilots identified the appropriate hazardous states in the takeoff. The 

pilots also have the opportunity to add comments.  
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Figure 20: The first few questions address the risk perception part of the feedback effectiveness. 
The Likert scale changes depending on whether the respondent belongs to a risk-centric or 
safety-centric framing language treatment group.  

5.4.2 Motivation to change 

To capture how likely pilots are to use the information provided to improve their future 

flights, I ask them to come up with changes that they could make to an upcoming flight, as 

shown in Figure 21. The three factors I am investigating could potentially impact the number 

of changes pilots recommend. Pilots may choose to say they would not make any changes.  
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Figure 21: Respondents could suggest up to five changes that they could make to an upcoming 
flight after reviewing their debrief.  

The answers to the question in Figure 21 feed into the next two questions: How likely are you 

to make each of these changes to an upcoming flight? and How important do you think each of 

these changes is to reducing risk on takeoff? shown in Figure 22. If the respondent does not 

indicate that they would make any changes, they are not presented with these questions. 

Effective risk messages, however, will motivate the pilots to change something that they have 

identified as being unsafe, so if the feedback is effective, I expect to see at least one of the 

changes rank highly on the ‘likelihood’ scale. 
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Figure 22: The respondents get two more Likert scale questions for each change they say they 
may make to an upcoming flight, asking about the likelihood of them actually making the 
changes as well as the importance of each change.  

The respondents debrief three flights, and therefore answer these questions three times 

before moving on to the demographic questions.  
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5.5 Demographics 

This section outlines the demographic questions that each respondent will have a chance to 

answer. None of them are mandatory, so some pilots may end up skipping all of them. 

However, since the demographic questions come at the end, the rest of the responses to the 

survey are still useful if a pilot decides not to participate in the last part. Most of these 

questions are multiple choice, with some of them requiring the respondent to type in a short 

answer, either numerical or a one-word response. 

1) How old are you? 

18-24; 25-34; 35-44; 45-54; 55-64; 65 or older 

2) What gender do you identify with? 

Male; Female; Other; Do not wish to specify 

3) What is the highest level of education you have completed? 

Some high school; High school graduate or equivalent; Some college; 2-year degree; 4-year 

degree; Master’s degree; Doctorate or Professional degree 

4) What is your occupation? 

[Type in answer] 

5) What kind of pilot’s license do you currently hold? 

No certificate; Student; Sport; Recreational; Private; Commercial; Airline Transport 

6) Which ratings or endorsements do you currently hold? 

Single-engine; Multi-engine; Instrument, Rotorcraft-Helicopter; Glider; Lighter-than-air; 

Seaplane; Complex; Tailwheel; High altitude; High performance; Flight instructor; 

Instrument flight instructor; Multi-engine flight instructor 

7) How many years of flying experience do you have? Round to the nearest year. 

[Type in answer] 

8) Was your flight training under Part 61 or Part 141? 

Part 61; Part 141; Both; I do not know 
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9) What kind of avionics do you most frequently use when you fly? 

Mostly steam gauges; Mostly glass cockpit; Both 

10) How many flight hours do you have logged (approximately)? 

[Type in answer] 

11) How often do you fly? 

2-7 days a week; Once a week; Once a month; Once every few months; Rarely/Never 

12) How often do you participate in aviation safety programs and seminars (such as 

WINGS, FAASTeam seminars, etc.)? 

Monthly; 2-3 times a year; Once a year; Once every two years; Never 

13) What is your home airport base? (ICAO identifier or city/state) 

[Type in answer] 

14) Have you used commercial debrief products, like CloudAhoy, before? 

Yes; No 
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6. Survey Analysis 

As described in Chapter 5, the experiment consisted of a full factorial design with three 

factors. The three factors are representation method (X1), parameter type (X2), and framing 

language (X3). I want to ascertain the importance of each factor on Risk Perception (Y1) and 

Behavior Change (Y2). Each factor Xi has two levels, +1 and −1. For example, the Language 

factor, X1, can take Risk-centric Language at the +1 level and Safety-centric Language at the 

−1 level. Since there are three factors, each run at two levels, there will be 23 = 8 treatment 

combinations. Using a full factorial design allows me to investigate how multiple factors 

affect the output—risk perception and post-debrief behavior. 

The survey resulted in 187 responses that were entirely complete and a total of 268 usable 

responses. A usable response is any response where the pilot debriefed and responded to 

the questions of at least Flight A, whereas in a complete response the pilot has debriefed all 

three flights and then answered the demographic questions at the end. Since the survey 

consisted of three separate flight scenarios presented in the same order, I start by treating 

the three flights as distinct experiments. Flight A has 268 responses in total, Flight B has 195 

responses, and Flight C has 189 responses. Table 8 shows the number of responses 

(replicates) for each treatment combination.  

The distribution of the overall risk perception data for Flight A (Figure 24, Appendix III) 

displays a bell-curve shape that is slightly skewed towards riskier values. The horizontal axis 

in Figure 24 consists of ordinal Likert-scale data from 1 to 5. The median and mean are close 

together, at 3 and 3.10 respectively, but while the ordinal scale used has a rank order, the 

intervals between values may turn out to not be equal (Jamieson, 2014). The overall 

distribution for the responses for Flight B, shown in Figure 25 in Appendix III, is flatter and 

slightly skewed towards less risky values, with a standard deviation of 1.18. While the 

median (3) and mean (2.99) closely match those of Flight A, the responses tend to spread 

further away from the median. The distribution of Flight C responses (Figure 26, Appendix 

III) resembled the bell-curve of Flight A. Although Flight C has less responses, it maintained 

the central tendency around the neutral point, with the median (3) and mean (2.93) being 

very similar to those of Flights A and B. Overall, the pilots were able to understand the 
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relative differences in risk between the three flights, but a lot of them chose to respond using 

the neutral option (i.e., 3 on the Likert scale), so the mode was 3 in all three flights. While I 

use non-parametric statistical analysis methods in this Chapter, I will also compare the 

results to methods used for normally-distributed continuous data because of the bell-curve 

shape of the data and the large sample size. 

To determine how the three factors (representation method, parameter type, and framing 

language) independently impact the risk perception responses, I first created histograms of 

the response variable separated by factor levels. The difference in how the three factors 

influenced the results on the three flights suggests that the type of flight, level of risk, or type 

of hazardous states present in the flight could be additional factors that change how risk 

perception is affected.  

In this Chapter, I first discuss the demographics and sample sizes that resulted from the 

survey, and then analyze the survey results using metrics that capture both facets of risk 

effectiveness. I use the answer to the question “How risky do you think this takeoff was?” to 

evaluate how two groups of pilots perceived their risk relative to each other, and the number 

of changes they report to the question “What changes do you think you could make to an 

upcoming flight as a result of the information presented here, if any?” The analysis is 

structured as follows: I first analyze the main effects of each of the three factors 

(representation method, parameter type, and framing language) on all metrics. I then 

analyze any interaction effects between the three factors and discuss the overall results.   

6.1 Demographics 

Out of all respondents, 188 worked on the demographics section. I deliberately designed the 

survey to transition through the three flight debriefs first before getting to demographics, so 

that I could still analyze data from respondents who decided to not finish the survey. 

Approximately 70% of the responses (i.e., those which had at least Flight A) were complete 

(had Flight A, B, C, and provided demographic information). Out of the respondents who 

provided demographic information, the majority were male (71% male and 26% female) 

and also completed at least a 4-year degree (76%). The majority of the sample consisted of 

private (49%) and commercial pilots (30%), with 58% of all respondents also having an 
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instrument rating. Most respondents fly primarily aircraft with steam gauges (64%) and fly 

at least weekly (59%). The survey also reached pilots who are not as heavily involved in 

aviation—23% fly once a month, and 8% rarely fly. A few respondents (21%) reported that 

they never participate in aviation safety programs (such as the WINGS program, seminars, 

or training videos). Training for the largest portion of pilots was exclusively under Part 61 

regulations (43%), while 13% of pilots trained exclusively through Part 141 schools, 31% in 

a combination of Part 61 and 141 programs, and another 13% did not know what kind of 

training they followed. Surprisingly, 88% had never used commercial debrief or flight 

visualization products like CloudAhoy before.  

Table 8: As expected, not everyone completed the survey, which resulted in Flight A having more 
responses overall than Flights B and C. Most people stopped the survey after Flight A, with 
people being likely to complete the entire survey if they made it to Flight B.  

Treatment Combination 

(X) 

Responses 

Flight A (268) Flight B (195) Flight C (189) 

1: [+1 +1 +1] 35 29 19 

2: [+1 +1 −1] 31 19 22 

3: [−1 +1 +1] 44 24 28 

4: [−1 +1 −1] 33 29 24 

5: [+1 −1 +1] 23 22 23 

6: [+1 −1 −1] 34 21 19 

7: [−1 −1 +1] 33 26 27 

8: [−1 −1 −1] 35 25 27 

 

6.2 Representation Method 

The representation method factor could take one of two levels: graphical, or numerical. Table 

9 shows the number of responses corresponding to each level of the representation method 

factor for each flight. Although the survey software presented the graphical and numerical 

representation type versions of the survey to equal numbers of respondents, noticeably 
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fewer respondents completed the graphical version of the survey, for all three flights. This 

discrepancy potentially suggests that pilots prefer to review numerical data, instead of trying 

to decipher graphical information. A chi-square test does not support the hypothesis that the 

completion ratios among graphical representations and numerical representations are 

different. The median pilot took 89 seconds to review their debrief in Flight C for both 

representation types, 116 seconds and 95 seconds in Flight B for graphical and numerical 

representation methods respectively, and 49 seconds and 60 seconds in Flight A for 

graphical and numerical representation methods respectively.  

Table 9: The responses were split unevenly between the graphical and numerical levels. Overall, 
the number of responses decreased with each flight, and more people responded to the 
numerical representation version of the survey. The percentages represent the completion ratio 
among pilots who saw the specific survey version. For example, 368 pilots were presented with 
the graphical representation method version of the survey for Flight A, and 123 completed it, 
resulting in a 33% completion percentage. The completion ratio increased with each flight.  

 Number of responses 

Flight Graphical Numerical Total 

A 123 33% 145 39% 268 36% 

B 91 64% 104 73% 195 68% 

C 83 77% 106 98% 189 88% 

 

Figure 30 in Appendix III separates the responses of pilots who debriefed the flight 

graphically and numerically for all three flights in six histograms. The representation method 

factor changed the response mode only in Flight B. Flight C appeared to be largely unaffected. 

Flight A maintained the same mode, but the graphical representation was more uniform in 

distribution around the mid-point than the numerical level. Flights A and B seem to have 

moved in opposite directions—the graphical representation moved the responses slightly 

towards the riskier side in Flight A compared to the numerical representation, but 

distinctively towards the less risky side in Flight B. Table 10 shows some of the descriptive 

statistics on risk perception for the graphical and numerical representation methods among 

the three flights. Section 5.2 discussed one way to calculate the risk in a takeoff based on the 

number and severity of the hazardous states present in it. Using that metric, Flight A is the 

riskiest takeoff, and Flight B the safest takeoff. This ranking appears in the mean risk 
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perception score for the graphical representation, but the highest mean in risk perception 

across all three flights for the numerical representation suggests that the pilot sample 

thought that Flight B was the riskiest takeoff among the three flights. 

Table 10: The way pilots rated their risk changed between graphical and numerical 
representation methods. The largest change happened in Flight B, with the mean increasing 
from 2.76 in the graphical method to 3.20 in the numerical method.  

 Risk rating 

 Graphical Numerical 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 3.1951 0.9889 3 2 3.0138 1.0340 3 2 

B 2.7582 1.2679 3 2 3.2019 1.0647 3 2 

C 2.9277 0.9342 3 2 2.9340 1.0353 3 2 

 

The number of changes the pilots suggested after reviewing their feedback is an indication 

of how motivated they are to change unsafe behaviors. Overall, the safer takeoff in Flight B 

resulted in a lower number of suggested changes, and the riskier takeoff in Flight A in more 

changes, as shown in Table 11. The riskier takeoff also resulted in pilots suggesting more 

changes they would make to an upcoming flight. Figure 31 in Appendix III shows the effect 

of representation method on the number of changes the pilots came up with in each of the 

three flights. Although the numerical representation did decrease the number of 

respondents who opted for no changes after their debrief in Flights B and C, the same did not 

apply to Flight A, the riskier flight. In Flight B, in particular, the numerical representation 

resulted in most respondents saying they would make two changes, whereas the mode for 

the graphical representation method was zero. The average response among pilots was a 

total of 50 (graphical representation) and 52 (numerical representation) characters in 

length for Flight A, as shown in Table 31 in Appendix III, 36 and 53 for Flight B, and 51 and 

45 for Flight C. 
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Table 11: The number of changes pilots suggested after reviewing their debrief ranged from 
zero to five. The numerical representation method resulted in a higher number of changes 
overall. 

 Number of changes 

 Graphical Numerical 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 1.3984 1.3474 1 2 1.5724 1.3629 2 3 

B 1 0.9661 1 2 1.3654 0.8251 1 1 

C 1.3133 1.1575 1 2 1.5377 1.0882 2 1 

 

The Mann Whitney U test showed statistical differences in the numerical and graphical 

distributions for the risk perception in Flight B but not Flights A or C. I used the Mann 

Whitney U Test because the survey data consists of a categorical independent variable 

(representation method) of two levels (numerical and graphical) and an ordinal dependent 

variable (Likert-scale data). 

The results suggest that choosing a numerical representation when communicating risk to 

pilots can potentially push them towards seeing a higher level of risk in their flights and also 

make them more willing to change their behaviors. Pilots also had a greater tendency to give 

up on the graphical methods, perhaps being frustrated at having to decipher information. 

These findings suggest that the risk communication biases in other fields may not be 

applicable to aviation—in medicine, patients prefer graphical methods, often due to a lack of 

numerical literacy, which is not the case among pilots.   

6.3 Parameter Type 

The parameter type factor can also take one of two values: safety parameters, or 

performance parameters. Parameter type refers to whether the parameter is presented in 

terms of risk or performance. For example, comparing the amount of runway that the pilot 

used in taking off to the takeoff distance specified in the aircraft handbook, tells the pilot how 

close they were to the nominal way of flying in comparison to the handbook. Reporting the 

amount of runway that remained after takeoff instead (i.e., the runway length that was not 
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used) aims to communicate how much room for error the pilot had, based on how close the 

pilot and aircraft are to an unsafe situation or incident. In the first case, the pilot should want 

to minimize the number; in the latter case, a higher number is better. Table 12 shows the 

number of responses corresponding to each level of the parameter type factor for each flight. 

In this parameter, there is no consistent discrepancy between number of responses for the 

two levels.  

The median pilot took 88-99 seconds to review their debrief in Flight C for both parameter 

types, 106 seconds and 102 seconds in Flight B for performance parameters and safety 

parameters respectively, and 60 seconds and 46 seconds in Flight A for performance and 

safety parameters respectively. Similar to the results for representation method, the 

respondents in Flight C took more time to review their debrief and the time responses are 

less affected by outliers and the people who decided not to continue.  

As shown in Table 12, the completion rates were more even among safety and performance 

parameters. The difference in completion rates between safety and performance parameters 

was less than or equal to 5% in all three flights.   

Table 12: The responses were split more evenly between the performance parameter and safety 
parameter levels compared to the representation method factor.  

 Number of responses 

Flight Performance  Safety Total 

A 143 39% 125 34% 268 36% 

B 101 71% 94 66% 195 68% 

C 93 86% 96 89% 189 88% 

 

Figure 32 in Appendix III separates the risk perception responses of pilots who debriefed the 

takeoffs in terms of safety parameters and performance parameters for all three flights. The 

distribution of risk perception responses in Flight A had a slightly smaller variance in the 

safety representation. The safety parameters in Flight B moved the responses to the right, 

towards extremely risky, with a different mode in the safety and performance parameters 

cases. The parameter type made no noticeable difference in Flight C. Both Flight A and C 

maintained the same mode.  
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Table 13 shows some of the descriptive statistics on risk perception for the performance and 

safety parameter types among the three flights. According to the risk metric, Flight A is the 

riskiest takeoff, and Flight B the safest takeoff. The means among the three flights for the 

performance parameter correspond to the risk metric ranking, but the mean for the safety 

parameter for Flight B suggests that it would be the riskiest takeoff among the three flights. 

Table 13: Pilots risk perception changed between performance and safety parameter types in 
Flight B, with the mean increasing from 2.63 in the performance parameter type to 3.38 in the 
safety parameter type.  

 Risk rating 

 Performance Safety 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 3.1538 1.0299 3 2 3.0320 0.9995 3 2 

B 2.6337 1.0145 3 1 3.3830 1.1742 3 1 

C 2.9570 0.9659 3 2 2.9063 1.0165 3 2 

 

Figure 33 (Appendix III) shows the distributions of the number of changes pilots suggested 

after reviewing their debrief for all three flights, split by parameter type. The safety 

parameter increased the number of changes pilots suggested after reviewing their feedback 

in Flights B and C, but decreased the mean of the number of changes in Flight A, as shown in 

Table 11. For the riskier takeoff in Flight A, pilots suggested more changes they would make 

to an upcoming flight when presented with the performance parameters. The safety 

parameter version of the debrief reduced the respondents who opted to continue without 

making any changes in Flight B and C (the safer takeoffs), but increased the “no changes” 

responses in Flight A (the riskier takeoff). The average response among pilots was a total of 

56 and 46 characters in length for performance and safety parameters respectively in Flight 

A, as shown in Table 31 in Appendix III, 37 and 54 in Flight B, and 48 and 59 in Flight C. The 

discrepancy between the two groups is higher in the parameter type factor than the 

representation method factor. 



78 

Table 14: The numerical representation method resulted in a higher number of changes overall. 

 Number of changes 

 Performance Safety 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 1.6364 1.3612 2 3 1.3280 1.3367 1 2 

B 1.000 0.8602 1 2 1.4043 0.9196 1 1 

C 1.3226 1.0951 1 2 1.5521 1.1413 1.5 1 

 

Similarly to the representation method, the Mann Whitney U test showed statistical 

differences in the performance and safety parameter type distributions for the risk 

perception in Flight B (p-value 6.9202e-06) but not Flights A or C (p-value 0.4316 and 0.7806 

respectively). 

From the results presented in this section, it is not clear whether risk communication for 

pilots should use performance parameters, safety parameters, or a combination of the two 

types. Performance parameters encouraged pilots in Flight A to rank the takeoff as being 

riskier and suggest more changes, whereas safety parameters did the equivalent for Flight B.   

6.4 Framing Language 

Figure 34 in Appendix III shows how pilots responded when asked “How risky would you say 

this takeoff was?” versus “How safe would you say this takeoff was?” While mathematically a 

flight that is not too risky is by definition very safe, the phrasing did affect how pilots 

perceived the risk. Although Flight C was not affected by the framing language, as with the 

other two factors, in the safety-centric language there is a higher concentration towards the 

neutral value. However, the framing language factor changed the mode in Flight B and 

altered the distribution in Flight A. Flight B also shows a general movement towards the 

riskier side when using a safety-centric framing language. 

Table 15 shows the number of responses corresponding to each level of the parameter type 

factor for each flight. In this parameter, the difference between the number of responses for 

the two levels is small and inconsistent among the three flights. The difference in completion 

rates between safety and performance parameters was less than or equal to 5% in all cases.   
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Table 15: The complete responses were split evenly between the safety-centric language and 
risk-centric language levels compared to the representation method factor.  

 Number of responses 

Flight Safety-centric Risk-centric Total 

A 135 37% 133 36% 268 36% 

B 101 71% 94 66% 195 68% 

C 97 90% 92 85% 189 88% 

 

Figure 34 in Appendix III separates the risk perception responses of pilots who debriefed the 

takeoffs in a safety-centric language and in a risk-centric language for all three flights. The 

framing language did not make a difference in Flight C. The impact on Flight A was different 

than the impact on Flight B—in the first case, framing the question in safety-centric language 

resulted in more people saying the flight was not safe, whereas in the second case framing 

the question in risk-centric language decreased the number of people saying the flight was 

not risky and increased the number of people reporting that the flight was risky. 

Table 13 shows some of the descriptive statistics on risk perception for the risk-centric and 

safety-centric framing languages among the three flights. The framing language resulted in a 

change in the mean in Flight A but did not affect Flights B or C. While framing language 

changed the mode in Flight B, it did not change the mean, so an ANOVA could not report that 

change since it only compares the means.  

Table 16: The framing language caused a slight change in the means of the risk perception in 
Flight A.   

 Risk rating 

 Safety-centric Risk-centric 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 3.2519 1.0631 3 1.75 2.9398 0.9436 3 2 

B 2.9802 1.0953 3 2 3.0106 1.2742 3 2 

C 2.9897 0.9947 3 2 2.8696 0.9858 3 2 
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Figure 35 (Appendix III) shows the distributions of the number of changes pilots suggested 

after reviewing their debrief for all three flights, split by framing language. The distributions 

look the same for all flights independent of the framing language used. Table 14 shows the 

descriptive statistics for all three flights. The average response among pilots was a total of 

55 and 50 characters in length for the safety-centric and risk-centric framing languages 

respectively in Flight A, as shown in Table 31 in Appendix III, 46 and 44 in Flight B, and 51 

and 55 in Flight C. The difference between the two framing languages is much lower in this 

factor than the representation method and parameter type factors.  

Table 17: The framing language did not change the number of changes that the pilots said they 
would make to an upcoming flight. 

 Number of changes 

 Safety-centric Risk-centric 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 1.5556 1.3308 2 2 1.4286 1.3833 1 3 

B 1.1486 0.9098 1 2 1.2447 0.9121 1 1 

C 1.4536 1.1816 2 2 1.4239 1.0611 1 1 

 

The Mann Whitney U test showed statistical differences in the safety-centric and risk-centric 

framing languages for the risk perception in Flight A (p-value 0.0093) but not Flights B or C 

(p-value 0.9770 and 0.4758 respectively). 

From the results presented in this section, I cannot conclude that debrief should be using one 

particular framing language over the other, since framing language was only significant in 

one of the flights (the riskiest takeoff), and additional experiments are required.   

6.5 Interaction Effects 

I ran the full complement of all possible factor combinations to estimate all of the main effects 

between the factors and the results, as well as any interaction effects between factors. The 

full factorial design has three main effects and three two-factor interactions. 
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To test for interaction effects, I used the Scheirer-Ray-Hare non-parametric test for each 

flight. Because the Scheirer-Ray-Hare test is used for a two-way factorial design, I ran it with 

three combinations of two-factor pairs (Table 19, Appendix III). For Flight A, this test 

identified the framing language factor as a main effect on the risk perception response and 

the representation method and parameter type factors together as an interaction effect. The 

parameter type factor was a main factor that impacted the number of changes the pilots 

recommended in Flight A. A three-way ANOVA identified the same main and interaction 

effects (Table 25, Appendix III). Neither the Scheirer-Ray-Hare test (Table 20, Appendix III) 

nor the ANOVA (Table 26, Appendix III) identified any main effects or interaction effects 

which impact the number of changes pilots suggest after reviewing their debrief. In Flight B, 

both the Scheirer-Ray-Hare test (Table 21 and Table 22 in Appendix III) and the ANOVA 

(Table 27 and Table 28 in Appendix III) identified representation type and parameter type as 

main factors in both risk representation and the number of changes pilots suggested they 

would make. There were no significant main or interaction effects in Flight C (Table 23, Table 

24, Table 29, and Table 30 in Appendix III).  

6.6 Qualitative Responses 

The word cloud in Figure 23 corresponds to the changes pilots said they would make to an 

upcoming flight in Flight A. The words that appeared most frequently in the responses were 

centerline (83 times), runway (79 times), and wind (69 times). The words proper and speed 

usually went together. Takeoff and rotate/rotation speed also ranked high. Tailwind, 

crosswind, and RPM appeared lower on the list. The changes the pilots suggested mapped to 

the hazardous states that were present in the flight. The word clouds for Flight B and C are 

shown in Figure 36 and Figure 37 respectively (Appendix III). 
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Figure 23: The respondents to Flight A reported that they would make a total of 411 changes 
to an upcoming flight after reviewing their debrief. 

The average likelihood value and maximum likelihood value are the average response and 

maximum response of each pilot out of all their changes to the question How likely are you to 

make these changes to an upcoming flight? respectively. The maximum likelihood value 

should ideally be high if the feedback was effective, because it has motivated the pilot to do 

something to improve their flying on their next flight. The average likelihood value is 

dependent upon the number of changes that the pilot has provided—if they provide one 

change that they rate high and four changes that they rate low, the average likelihood value 

will be lower than a pilot’s who provided one highly-rated change. Both the average and 

maximum value distributions were similar across the three flights and all responses ranked 

highly. Each pilot suggested changes that they were likely to make (4 or 5 on the Likert scale).   
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6.7 Survey Analysis Results and Discussion 

The analysis of the survey has shown that debrief representation affects risk perception, but 

not necessarily willingness to change unsafe behaviors. Overall, respondents appeared to be 

highly motivated to change the behaviors they identified as unsafe independent of how the 

information was presented to them. Pilots reporting that they are likely to make the changes 

they reported, however, could potentially be a result of self-selection bias, where the pilots 

who took the survey already care about improving their safety. Using scenarios instead of 

data from flights that the pilots have actually flown might have had an impact on how willing 

the pilots were to recommend changes, suggesting that the flight was not entirely safe. All 

three factors investigated had an effect on risk perception, although not for the same flight. 

Framing language affected risk perception in Flight A, whereas parameter type and 

representation method affected risk perception in Flight B. Flight C remained unaffected by 

all three factors. The discrepancy in how the three factors impact risk perception in different 

flights may be a function of the risk level of each flight (Flight A is riskier than Flights B and 

C, as discussed in Section 5.2) or the kinds of hazardous states present in each flight. An 

additional survey would be required to investigate the effect of the flight characteristics on 

risk perception.   
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7. Conclusion and Future Work 

Safety has been at the forefront of the aviation industry ever since its conception. The 

continuous attempts at improving the safety record of flight have made air travel a relatively 

safe transportation mode. When accidents do occur, the lessons learnt are implemented in 

the rest of the fleet as well as future designs. The first fatal powered-aircraft crash in 1908 

resulted in the first Army pilots wearing helmets, which ensured they would not die in the 

same way as the one historical data point available. However, GA safety still lags, and the 

expected growth in the aviation industry makes improving the safety record imperative.  

There are numerous challenges in GA that make reactive safety measures less effective than 

in commercial aviation—the large diversity in the aircraft fleet and equipment, pilot 

experience, training, and qualifications makes it difficult to employ generalized methods 

across the board. In this research, I focused on improving safety by reducing human error 

through safety-driven debrief. Effective safety-driven debrief has to communicate the risk to 

pilots and motivate them to mitigate any unsafe behaviors. A comprehensive treatment to 

the topic should consider the following questions. 

1) Which unsafe behaviors should be communicated to pilots? 

2) How do we measure and calculate unsafe behaviors in different forms of flight data? 

3) What is the best way to communicate unsafe behaviors effectively to pilots? 

In this research, I addressed the three aforementioned questions. First, I identified unsafe 

events that need to be communicated to pilots by using the NTSB database to create a list of 

hazardous states and triggers. For this thesis, I created a list of hazardous states that 

appear in the takeoff phase of flight, which allowed me to have a more bounded list of 

hazardous states. Communicating hazardous states that have appeared in accidents either 

as causes of the accident or as factors ensures that the behaviors I am asking the pilots to 

correct are in fact unsafe. In this research, I also mapped the hazardous states for the takeoff 

phase to tasks and standards in the ACS for private pilots.  

I then described measurable parameters that can be reasonably mapped to the 

hazardous states during the takeoff phase and developed algorithms to detect them in 
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flight data. This research focused on FDR data, although the same techniques can be applied 

to other sources of data, with higher uncertainty in the final outcome. In particular, I 

calculated wind components at takeoff, runway distance remaining (and runway distance 

used), and deviation from the centerline (and distance from the edge of the runway) by 

combining different sources of data as described in the tables of Chapter 3. 

The last question aims to investigate how to best communicate feedback to pilots, based on 

their flight data and the considerations of questions 1) and 2). I defined feedback 

effectiveness based on whether it communicated the risk of the situation and whether it 

motivated pilots to improve their flying by doing something to mitigate the unsafe behaviors. 

To answer this question, I created graphical and textual/numerical representations to 

communicate each hazardous state, both in terms of a safety parameter and a performance 

parameter when applicable. I put these representations in a debrief format based on 

CloudAhoy and created an interactive prototype for a debrief tool to be used in a survey. I 

created and disseminated a survey based on a full-factorial design to evaluate whether 

three factors I chose based on the literature on cognitive biases in risk communication in 

other fields affect feedback effectiveness in aviation. I analyzed the results from 268 

responses and showed that the feedback representation does affect its effectiveness in terms 

of risk perception, but not when it comes to pilots’ motivation to change. The effect of the 

three factors is not consistent across the three flights. Section 7.1 discusses the limitations 

of the work and the results, and Section 7.2 suggests future work that can mitigate the 

limitations and advance the research.   

7.1 Limitations 

There are certain limitations to this work that arise mainly as a result of the survey design. 

Firstly, the post-debrief questions are not mandatory. There is no way of knowing whether 

respondents who chose to not recommend any changes to make are making that choice 

deliberately or out of time constraints. The results were not the same for all flights, 

suggesting that the flight may be one of the factors that affects feedback effectiveness. To 

eliminate the effect of the flight type on feedback, it would perhaps be beneficial to present 

pilots with feedback on specific states, instead of the flight as a whole. While narrowing the 
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survey down to particular states would take away the realism of a flight debrief, it would also 

decrease the number of variables. Other researchers may also disagree with the 

communication factors that I investigated, arguing that other factors may also influence 

feedback effectiveness, but studying more factors simultaneously results in a lengthier 

survey which requires more responses from which to draw conclusions. 

Another limitation was the type of survey data collected—Likert-scale data is ordinal and 

makes statistical analysis difficult. Pilots also interpret Likert-scale data independently, and 

it is not possible for researchers to know how the pilots interpreted them. Additionally, even 

though I followed survey design guidelines from the literature in creating the survey for this 

work, we do not know how pilots respond to different kinds of survey questions. For 

example, pilots were able to choose the neutral midpoint in each Likert-scale in the survey. 

Not having the midpoint as an option would have pushed pilots to choose the safe or risky 

side of the scale.  

In general, it is inherently difficult to draw conclusions from the pool of pilots who took the 

survey, because we do not know how they answered the questions. It is possible that 

respondents misunderstood questions or did not truthfully answer, since the questions were 

not based on their own flights. Using focus groups or in-person simulations and questioning 

would remedy the uncertainty that comes with an anonymous survey, but it would decrease 

the sample size and increase the pilot workload.  

7.2 Recommendations for Future Work 

In this research, I took the first steps towards understanding the cognitive biases that come 

into play when communicating risk-related information to pilots. This section discusses how 

each of the three questions can be further expanded to increase the impact of the work. 

7.2.1 Hazardous States During Other Phases of Flight 

The same techniques can be applied to hazardous states that occur during phases of flight 

other than takeoff. For example, a different set of states is important during a go-around, 

such as pitch attitude, angle of attack, airspeed, aircraft configuration, etc. Applying the work 
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on a different phase of flight can show whether the same observations and discussion in 

Chapter 6 apply to all states or if the observations are state-specific. 

7.2.2 Application of State Detection Algorithms to Data of Lower Resolution 

In this thesis, I focused on FDR data, mainly provided from a Garmin G1000 flight deck 

system. As discussed in Chapter 0, it is possible to repeat this work with data of lower 

resolution, such as smartphone data. Data of lower resolution or quality would introduce 

increased uncertainty in all parts of Figure 7 in Chapter 0. Firstly, the lack of some 

parameters, such as engine RPM or airspeed, makes the identification of phases of flight 

more complicated and less accurate. For example, in the takeoff case, I would have to identify 

the takeoff roll based on altitude (recorded with less accurate sensors than the aircraft 

instrumentation) and forward velocity alone, instead of using altitude in combination with 

engine RPM, pitch attitude, and vertical speed. Then, I would also have to detect hazardous 

states using parameters that I calculate with less accuracy. For example, in this thesis I was 

able to calculate deviation from the runway centerline precisely using G1000 data. To detect 

the same hazardous state using smartphone data, I would first have to find an approximate 

takeoff point, and then calculate an approximation to the centerline deviation, which could 

push the flight into a false alarm hazardous state prematurely.  

The higher uncertainty in the detection of hazardous states could potentially make the pilots 

less likely to believe the debrief and less likely to change their behaviors, so the results of 

Chapter 6 may not necessarily still apply with data of lower resolution.  

7.2.3 Investigating How Pilots Respond to Surveys 

In designing the survey for this research, I used literature on survey-biases that is 

generalized on the population as a whole. Guidelines included recommendations for when 

to use the neutral point in Likert scales and the implications of anchoring, among other 

biases. However, no one has investigated whether pilots respond to surveys in the same way 

as the general population or if they are subject to the same kinds of biases.  

A different kind of survey, designed to test different survey-taking biases with a control 

group and a number of experimental groups, can shed light on whether pilots are affected by 

different survey design techniques. Some of the factors that this survey can experiment with 
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are scale length (for example, a 5-point Likert scale versus a 10-point Likert scale), 

continuous versus discrete scales, and the effect of excluding the neutral point (for example, 

not including the middle value 3 on a 5-point Likert scale) on rating scales.  

The results of such a survey could help inform and increase the reliability and impact of 

future aviation research that implements other surveys.  

7.2.4 Effect of Demographics 

In this research, I investigated the effect of three communication factors on risk perception 

and motivation to change among all respondents. However, I collected a plethora of 

demographic information through the survey that can be used to investigate whether there 

are pilot characteristics that influence how pilots perceive their risk or understand their 

debrief. Some of these characteristics could be gender, age, flight experience, flight training 

background (Part 61 versus Part 141), education level, or occupation.  

Using the demographic information collected limits the number of responses that could be 

considered, as a number of pilots stopped taking the survey before reaching the 

demographic questions.  

7.2.5 Using Simulator Studies in Place of the Survey 

In the survey, I asked pilots to treat the flights they were debriefing as scenarios and pretend 

they were the ones flying, as it is easy to be more critical of a flight when we are not the ones 

responsible for it. Automating the creation of debrief screens and the tool could enable a 

more real-time application of the research, with participants completing a flight on a 

simulator before looking at their own data, answering questions on risk perception and 

willingness to change behaviors in a more realistic way.   
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Appendix I: FDR Data Log Comparison 

Table 18: The G1000 and Avidyne Entegra systems record similar data parameters in their logs 
but sometimes differ in their parameter names or units used.  

Parameter 
G1000 

Parameter ID 
G1000 Units Avidyne Parameter ID 

Avidyne 

Units 

Time Stamp     timeStamp   

Local Date Lcl Date mm/dd/yyyy mUtcDate mm:dd:yyyy 

Local Time Lcl Time hh:mm:ss mUtcTime hh:mm:ss 

Timezone UTCOfst hh:mm     

Time in Service     minutesInService minutes 

Active Waypoint 

Identifier 
AtvWpt ident mNxWptID   

Distance to Next 

Waypoint 
WptDst nm DistanceToWpt nm 

Bearing to Next 

Waypoint 
WptBrg degrees ActiveBearing degrees 

Estimated Time En 

Route 
    mEteInSeconds seconds 

Latitude Latitude degrees mLatitude degrees 

Longitude Longitude degrees mLongitude degrees 

Altitude AltB feet Baro 
altitude; 

baroCorrectedAlt 
feet 

Altitude Valid     
altitudeValid; 

baroCorrectedAltValid 
  

Altitude Bug     AltBug feet 

Barometer Setting BaroA inches baroSetting inHg 

Barometer Setting 

Valid 
    baroSettingValid   

Barometer Bug     mBaroBug inHg 

MSL Altitude AltMSL feet MSL     

Density Altitude     densityAltitude feet 

Density Altitude Valid     densityAltitudeValid   

Outside Air 

Temperature 
OAT degrees C totalTemperature degrees C 

Total Temperature 

Valid 
    totalTemperatureValid   

Indicated Airspeed IAS kt indicatedAirspeed kt 
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Parameter 
G1000 

Parameter ID 
G1000 Units Avidyne Parameter ID 

Avidyne 

Units 

Indicated Airspeed Bug     mIasBug kt 

Indicated Airspeed 

Valid 
    indicatedAirspeedValid   

Ground Speed GndSpd kt mGroundSpeed kt 

Vertical Speed VSpd fpm altitudeRate fpm 

Altitude Rate Valid     altitudeRateValid   

Vertical Speed 

Indicator Bug 
    mVsiBug fpm 

Pitch Pitch degrees pitch   

Pitch Valid     pitchValid   

Pitch Rate     Pitch Rate degrees/s 

Pitch Rate Valid     Pitch Rate Valid   

Roll Roll degrees roll   

Roll Valid     rollValid   

Roll Rate     Roll Rate degrees/s 

Roll Rate Valid     Roll Rate Valid   

Yaw Rate     Yaw rate degrees/s 

Yaw Rate Valid     Yaw Rate Valid   

Turn Rate     rateofTurn   

Turn Rate Valid     rateofTurnValid   

Lateral Acceleration LatAc G 
lateralAcceleration; Lat 

Accel 
m/s^2 

Lateral Acceleration 

Valid 
    

lateralAccelerationValid; 

Lat Accel Valid 
  

Vertical Acceleration NormAc G Norm Accel m/s^2 

Vertical Acceleration 

Valid 
    Norm Accel Valid   

Longitudinal 

Acceleration 
    Long Accel m/s^2 

Longitudinal 

Acceleration Valid 
    Long Accel Valid   

Heading HDG degrees magHeading   

Heading Bug     mHdgBug degrees 

Magnetic Heading Valid     magHeadingValid   

Track TRK degrees mGroundTrack degrees 

Voltage 1 volt1; volt2 volts     



96 

Parameter 
G1000 

Parameter ID 
G1000 Units Avidyne Parameter ID 

Avidyne 

Units 

Amperage 1 amp1; amp2 amps     

Fuel Flow E1 FFlow gph 
fuelflowL; fuelflowR; 

fuelFlowL; fuelFlowR 
gph; lbph 

Oil Temperature E1 OilT degrees F oilTempL / oilTempR degrees F 

Oil Pressure E1 OilP psi 
oilPresL / oilPresR / 

oilPressL / oilPressR 
psi 

Manifold Absolute 

Pressure 
E1 MAP Hg manPresL; manPresR inHg 

Engine Rotations per 

Minute 
E1 RPM rpm tachL; tachR rpm 

Engine Percent Power     
percentPowerL; 

percentPowerR 
% 

Engine Percent Torque     
engineTorquePercentL; 

engineTorquePercentR 
% 

Turbine Rotations per 

Minute 
    

engineNgPercentL; 

engineNgPercentR 
% 

Propeller Rotations per 

Minute 
    

engineNpPercentL; 

engineNpPercentR 
% 

Inlet Turbine 

Temperature 
    ittDegCL; ittDegCR   

Cylinder Head 

Temperature 

E1 CHT1; E1 

CHT2; E1 CHT 3; 

E1 CHT4; E1 

CHT5; E1 CHT6 

degrees F     

Exhaust Gas 

Temperature 

E1 EGT1; E1 

EGT2; E1 EGT 3; 

E1 EGT4; E1 

EGT5; E1 EGT6 

degrees F     

Cool Temperature     coolTempL; coolTempR degrees F 

Altitude GPS AltGPS ft wgs     

True Airspeed TAS kt trueAirspeed kt 

True Airspeed Valid     trueAirspeedValid   

Airspeed Trend     airspeedTrend   

Airspeed Trend Valid     airspeedTrendValid   

  HSIS enum     

Course CRS degrees ActiveCourse degrees 

Desired Course     
mDtkOrBrg; 

DesiredCourse 
degrees 
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Parameter 
G1000 

Parameter ID 
G1000 Units Avidyne Parameter ID 

Avidyne 

Units 

Navigational Frequency NAV1; NAV2 MHz VhfFreq   

Primary Navigation 

Source 
    ucPriNavSource   

Communication 

Frequency 
COM1; COM2 MHZ     

Horizontal Course 

Deviation Indicator 
HCDI fsd HdiDeviation % 

Horizontal Course 

Deviation Indicator 

Source 

    HdiSource   

Vertical Course 

Deviation Indicator 
VCDI fsd VdiDeviation % 

Vertical Course 

Deviation Indicator 

Source 

    VdiSource   

Wind Speed WndSpd kt     

Wind Direction WndDr degrees     

Magnetic Variation MagVar degrees     

Automatic Flight 

Control System On 
AfcsOn bool     

* RollM enum     

* PitchM enum     

Roll RollC degrees fdRoll   

Pitch PitchC degrees fdPitch   

GPS Vertical Speed VSpdG fpm     

GPS Fix GPSfix enum GpsHold   

Horizontal Alert Limit HAL mt HdiDeviationLimit   

Vertical Alert Limit VAL mt VdiDeviationLimit   

* HPLwas mt     

* HPLfd mt     

* VPLwas mt     

Active Annunciators     apAnnunciators   

Logic States     logicStates   

Map Format     mMapFormat enum 

Map Range     mMapRangeIndex   

Flags     
Flags; FlagsL; FlagsR; 

WaasFlags 
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Parameter 
G1000 

Parameter ID 
G1000 Units Avidyne Parameter ID 

Avidyne 

Units 

Saturated     saturated   

Saturated Valid     saturatedValid   

Go/No-go     
GoNogo; mpuNoGo; 

iruNoGo; magNoGo 
  

Needle Text Type     mNeedleTextType enum 

Dh Alert     mDhAlert   

Synthetic Rate Alarm     SyntheticRateAlarm   

Longterm Bias Drift 

Alarm 
    

LongtermBiasDriftAlar

m 
  

Bias Cutout Alarm     BiasCutoutAlarm   
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Appendix II: Survey 

Data-driven safety feedback as part of 
debrief for General Aviation pilots 

 

Start of Block: Informed Consent 

Dear Aviation Colleague, 

My name is Nicoletta Fala, and I am a Ph.D. candidate working with Prof. Karen Marais at the 

School of Aeronautics and Astronautics at Purdue University. We are seeking your input on 

post-flight debrief feedback in this survey. 

The motivation behind this research is the unacceptably high number of general aviation 

accidents. Our overall goal is to use flight data of various sources to help improve general 

aviation safety. We are trying to understand how different kinds of safety feedback affect risk 

perception among general aviation pilots. 

During the survey, you will be asked to review flight data from four flights and answer 

specific questions on the safety of each flight. We will then ask you a few demographic 

questions. The survey should take approximately 20 minutes to complete. During the survey, 

you will not be able to go back to the previous flight safety questions. You will, however, have 

the opportunity to review and change the demographic questions as you wish. You may 

choose to not answer some questions and you may stop the survey at any time without any 

repercussion to you. If you do not wish to complete the survey in one sitting, you may save 

your progress and return where you left off if you use the same computer to re-access the 

link. No personally identifiable information is being asked, analyzed or reported. All 

responses will be anonymous and in aggregate at the end of the study. 

Your participation in this survey is voluntary. You must be at least 18 years old to participate 

in this research. Thank you for your time and your cooperation. Your responses are greatly 

appreciated and will hopefully enable the general aviation community to improve their 

safety record. If you have any questions regarding the survey or the information contained 

within, please feel free to contact the researchers directly either at nfala@purdue.edu or 

kmarais@purdue.edu.  

 

Page Break  
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RESEARCH PARTICIPANT CONSENT FORM 

 

Data-driven safety feedback as part of debrief for General Aviation pilots 

Principal Investigator: Associate Professor Karen Marais 

School of Aeronautics and Astronautics 

Purdue University 

 

IRB Protocol # 1804020499 

 

What is the purpose of this study? 

This study seeks to evaluate whether data-driven post-flight debrief can be used to impact 

how pilots react to safety information. As a pilot, you can help us answer our research 

questions by evaluating the risk of hypothetical flights that you will have the chance to 

review. Through this research, we hope to come up with recommendations on how to 

communicate risk to pilots in a flight debrief format. 

What will I do if I choose to be in this study? 

If you choose to participate in this survey, you will be asked to review sample debrief screens 

of hypothetical flights. The screens will help you visualize the flight and give you information 

regarding the takeoff phase of each flight. At the end of the survey, we will also ask you some 

demographic questions. 

How long will I be in the study? 

This survey should take you approximately 20 minutes to complete. 

What are the possible risks or discomforts? 

The risk level to participating in this study is minimal, no greater than you would encounter 

in daily life or during the performance of routine psychological exams or tests. Breach of 
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confidentiality is a possible risk, however no identifiable information will be collected during 

the study.  

Are there any potential benefits?   

There are no direct benefits to participating in this study. We believe you will enjoy 

debriefing these flights. In the future, the results of this study may help us make General 

Aviation safer by understanding how to communicate risk better. 

Will information about me and my participation be kept confidential?   

All demographic information and answers to questions are anonymous. We will not be 

asking for or collecting any identifiable information in this survey. All demographic 

information and answers to questions will be kept indefinitely on a hard drive located in 

Armstrong Hall, for use in future research and academic publications.  

The project's research records may be reviewed by departments at Purdue University 

responsible for regulatory and research oversight. 

What are my rights if I take part in this study? 

Your participation in this study is voluntary. You may choose not to participate, or, if you 

agree to participate, you can withdraw your participation at any time without penalty or loss 

of benefits to which you are otherwise entitled. If you decide to stop the survey without 

finishing, some of your responses may still be usable to the researchers. 

Who can I contact if I have questions about the study? 

If you have questions, comments, or concerns about this research project, you can talk to one 

of the researchers. Please contact Prof. Karen Marais at (765) 494-0063 or 

kmarais@purdue.edu. If you have questions about your rights while taking part in the study 

or have concerns about the treatment of research participants, please call the Human 

Research Protection Program at (765) 494-5942, email (irb@purdue.edu) or write to:  

  

Human Research Protection Program - Purdue University 

Ernest C. Young Hall, Room 1032 

155 S. Grant St., 

West Lafayette, IN 47907-2114 
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Do you consent to participate in this research project? 

o Yes  (1)  

o No  (2)  

 

End of Block: Informed Consent 

 

Start of Block: 0.0 

During this survey, you will be presented with three sets of semi-interactive debrief screens 

for the takeoff phase of flight for a Cessna 172. The first set of screens is a tutorial so that you 

can get comfortable with navigating through the different screens. After completing the 

tutorial, you will have a chance to debrief and answer questions on three flights. 

You can obtain more information on the performance of a Cessna 172 here. You can refer 

back to this document as you go through the different screens. During the survey, you will 

have as much time as you need to review the debrief screens, but once you click on "Next" to 

proceed to the questions, you will not be able to return to the debrief. 

When you are ready to take the actual survey, proceed to the next screen. Please remember 

that you will not be able to return to the debrief after clicking "Next." 

 

<<Interactive tutorial version of debrief tool.>> 

 

 

 

Thank you for completing the tutorial; you can now move on to reviewing and evaluating 

takeoffs.  

 

End of Block: 0.0 
 

  

http://sportysnetwork.com/sportysacademy/wp-content/blogs.dir/3/files/2015/05/C172M-V-Speeds-KTS.pdf%22%20style=%22box-sizing:%20border-box;%20color:%20rgb(0,%20122,%20192);%20text-decoration-line:%20none;%20cursor:%20pointer;%20outline:%20none;%20transition:%20border-color%200.2s;
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Note: The following blocks are repeated three times for three different flights, before moving 
to the demographics block. The questions displayed take the form of the Safety block or the 
Risk block, both of which are included here. Only one questions block is displayed for each 
flight reviewed.  

 

Start of Block: 1.1-1.4 

 

Review the following takeoff phase of flight as presented in these debrief screens, taking as 

much time as you need. The aircraft involved is a Cessna 172. 

The debrief screens are semi-interactive: Under "Segments Manager," click on "takeoff KOSU 

RWY 27L" to choose the takeoff segment. Then click on each event you want to further 

investigate from the  "takeoff safety information" list on the right. 

When you are ready to answer questions about this takeoff, proceed to the next screen. Note 

that you will not be able to return to the debrief after clicking "Next." 

 

<<Randomized interactive debrief tool.>> 

 

End of Block: 1.1-1.4 
 

 

Start of Block: Questions [Safety] 

 

Given the information presented to you, how safe would you say this takeoff was? 

 Not safe at all Extremely safe 
 

 1 2 3 4 5 
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In this takeoff, which of the following would concern you, if any? 

▢ Centerline deviation  (1)  

▢ Rotation airspeed  (2)  

▢ Engine RPM  (3)  

▢ Takeoff distance  (4)  

▢ Wind  (5)  

 

 

 

QS3 Optional comments 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

 

Page Break  
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What changes (up to 5) do you think you could make to an upcoming flight after the 

information presented here, if any? 

o Change 1  (1) ________________________________________________ 

o Change 2  (2) ________________________________________________ 

o Change 3  (3) ________________________________________________ 

o Change 4  (4) ________________________________________________ 

o Change 5  (5) ________________________________________________ 

 

 

Page Break  

 

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... 
Change 1 Is Not Empty 

 

How likely are you to make each of these changes to an upcoming flight? 

 Not likely at all Extremely likely 
 

 1 2 3 4 5 
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${QS3/ChoiceTextEntryValue/1} () 
 

${QS3/ChoiceTextEntryValue/2} () 
 

${QS3/ChoiceTextEntryValue/3} () 
 

${QS3/ChoiceTextEntryValue/4} () 
 

${QS3/ChoiceTextEntryValue/5} () 
 

 

 

 

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... 
Change 1 Is Not Empty 

 

How important do you think each of these changes is to improving safety on takeoff? 

 Not important at all Extremely important 
 

 1 2 3 4 5 
 

${QS3/ChoiceTextEntryValue/1} () 
 

${QS3/ChoiceTextEntryValue/2} () 
 

${QS3/ChoiceTextEntryValue/3} () 
 

${QS3/ChoiceTextEntryValue/4} () 
 

${QS3/ChoiceTextEntryValue/5} () 
 

 

End of Block: Questions [Safety] 
 

Start of Block: Questions [Risk] 
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Given the information presented to you, how risky would you say this takeoff was? 

 Not risky at all Extremely risky 
 

 1 2 3 4 5 
 

   
 

 

 

 

In this takeoff, which of the following would concern you, if any? 

▢ Centerline deviation  (1)  

▢ Rotation airspeed  (2)  

▢ Engine RPM  (3)  

▢ Takeoff distance  (4)  

▢ Wind  (5)  

 

 

 

QS3 Optional comments 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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________________________________________________________________ 

 

 

Page Break  

What changes (up to 5) do you think you could make to an upcoming flight after the 

information presented here, if any? 

o Change 1  (1) ________________________________________________ 

o Change 2  (2) ________________________________________________ 

o Change 3  (3) ________________________________________________ 

o Change 4  (4) ________________________________________________ 

o Change 5  (5) ________________________________________________ 

 

 

Page Break  

 

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... 
Change 1 Is Not Empty 

 

How likely are you to make each of these changes to an upcoming flight? 

 Not likely at all Extremely likely 
 

 1 2 3 4 5 
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${QS3/ChoiceTextEntryValue/1} () 
 

${QS3/ChoiceTextEntryValue/2} () 
 

${QS3/ChoiceTextEntryValue/3} () 
 

${QS3/ChoiceTextEntryValue/4} () 
 

${QS3/ChoiceTextEntryValue/5} () 
 

 

 

 

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... 
Change 1 Is Not Empty 

 

How important do you think each of these changes is to reducing risk on takeoff? 

 Not important at all Extremely important 
 

 1 2 3 4 5 
 

${QS3/ChoiceTextEntryValue/1} () 
 

${QS3/ChoiceTextEntryValue/2} () 
 

${QS3/ChoiceTextEntryValue/3} () 
 

${QS3/ChoiceTextEntryValue/4} () 
 

${QS3/ChoiceTextEntryValue/5} () 
 

 

End of Block: Questions [Risk] 
 

 

Start of Block: Demographics 
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You are almost done! We will next ask you some quick demographic questions that will help 

us improve the quality of our analysis.  

 

 

Page Break  
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QD1 How old are you? 

o 18-24  (1)  

o 25-34  (2)  

o 35-44  (3)  

o 45-54  (4)  

o 55-64  (5)  

o 65 or older  (6)  

 

 

QD2 What gender do you identify with? 

o Male  (1)  

o Female  (2)  

o Other  (3) ________________________________________________ 

o Do not wish to specify  (4)  
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QD3 What is the highest level of education you have completed? 

o Some high school  (1)  

o High school graduate or equivalent  (2)  

o Some college  (3)  

o 2-year degree  (11)  

o 4-year degree  (12)  

o Master's degree  (13)  

o Doctorate or Professional degree  (14)  

 

 

QD4 What is your occupation? 

________________________________________________________________ 

 

 



113 

QD5 What kind of pilot's license do you currently have? 

o No certificate  (1)  

o Student  (2)  

o Sport  (3)  

o Recreational  (4)  

o Private  (5)  

o Commercial  (6)  

o Airline Transport  (7)  
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QD6 Which ratings or endorsements do you currently have? 

▢ Single-engine  (1)  

▢ Multi-engine  (2)  

▢ Instrument  (3)  

▢ Rotorcraft-Helicopter  (4)  

▢ Glider  (5)  

▢ Lighter-than-air  (6)  

▢ Seaplane  (7)  

▢ Tailwheel  (8)  

▢ High altitude  (9)  

▢ High performance  (10)  

▢ Flight instructor  (11)  

▢ Instrument flight instructor  (12)  

▢ Multi-engine flight instructor  (13)  
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QD7 How many years of flying experience do you have? Round to the nearest year.  

________________________________________________________________ 

 

 

 

QD8 Was your flight training under Part 61 or Part 141? 

o Part 61  (1)  

o Part 141  (2)  

o Combination/both  (3)  

o I do not know  (4)  

 

 

QD9 What kind of avionics do you most frequently use in your flying? 

o Mostly steam gauges  (1)  

o Mostly glass cockpit  (2)  

o I fly both equally frequently  (3)  

 

 

QD10 How many flight hours do you have logged (approximately)? 

________________________________________________________________ 
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QD11 How often do you fly? 

o Once a week  (1)  

o 2-7 days a week  (2)  

o Once a month  (3)  

o Once every few months  (4)  

o Rarely/never  (5)  

 

 

 

QD12 How often do you participate in aviation safety programs and seminars (such as 

WINGS, FAASTeam seminars, AOPA training videos, etc.)? 

o Monthly  (1)  

o 2-3 times a year  (2)  

o Once a year  (3)  

o Once every two years  (4)  

o Never  (5)  

 

 

QD13 Where is your home airport base? (ICAO identifier or city/state) 

________________________________________________________________ 

 

 



117 

QD14 Have you used commercial debrief products, like CloudAhoy, before? 

o Yes  (1)  

o No  (2)  

 

End of Block: Demographics 
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Appendix III: Survey Responses 

 

Figure 24: The respondents answered the question "How risky would you say this takeoff was?” 
using a 5-point Likert scale. For Flight A, most respondents opted for a neutral value around 
the center, but ~13% used the extreme values of not risky at all and extremely risky.  
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Figure 25: The respondents in Flight B also congregated around the mid-point, however, 
many more of them (23%) chose the extreme values of not risky at all and extremely risky. 
The overall number of responses decreased for Flight B compared to Flight A. 
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Figure 26: Most respondents for Flight C also opted for a neutral value around the center, with 
only ~12% using the extreme values of not risky at all and extremely risky. 
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Figure 27: Most respondents said they would make two changes to their flying after reviewing 
their debrief for Flight A. Most of these changes referred to the centerline and the airspeed—
pilots said they would maintain better rudder control to keep the nose on the centerline, and be 
more patient in waiting until 55 knots to rotate. Some respondents also referred to the wind, 
takeoff distance, and engine RPM, with suggestions to use a different runway, avoid the 
intersection departure, talk to a mechanic to evaluate the engine performance, and potentially 
abort the takeoff because of centerline deviation.  
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Figure 28: Respondents in Flight B said they would make up to three changes at most. Most 
pilots only wrote in one or two changes. Since Flight B had less hazardous states than Flight A, 
the discrepancy in the number of changes is reasonable. The changes in Flight B focused on 
engine issues and rotation airspeed.  
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Figure 29: Changes suggested for Flight C included better directional control, choosing a 
different runway, and rotating at a higher airspeed. Most respondents said they would make up 
to two changes to their flying.  
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Figure 30: Survey respondents could see their flight debrief information graphically (left) or 
numerically (right). The three rows correspond to the three flights the respondents reviewed.  
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Figure 31: Respondents were more likely to do nothing to change the behaviors they identified 
when I presented their debrief to them graphically (left). The frequency of zero changes goes 
down in the numerical case (right).  
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Figure 32: The survey communicated information in terms of performance parameters (left) 
and safety parameters (right).  
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Figure 33: The safety parameter version of the debrief reduced the respondents who opted to 
continue without making any changes in Flight B and C, but increased the “no changes” 
responses in Flight A.  
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Figure 34: The survey asked pilots to rate the risk or safety of the takeoff in the flight they 
debriefed. The Likert-scale was inverted in each case to maintain consistency. 
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Figure 35: The framing language did not consistently affect the number of changes pilots 
suggested in any of the three flights.  

  



130 

Table 19: The Scheirer-Ray-Hare test for the risk perception in Flight A identified framing 
language as a main effect and the representation method and parameter type factors as an 
interaction effect.   

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 3426 0.6198 0.43111 

language 1 35420 6.4089 0.01135 

parameter:language 1 747 0.1351 0.71316 

Residuals 264 1436035   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 11623 2.1031 0.14700 

language 1 40009 7.2392 0.00713 

representation:language 1 1395 0.2523 0.61543 

Residuals 264 1422601   

 

y ~ representation + parameter 

representation  1 11623 2.1031 0.14700 

parameter 1 3356 0.6073 0.43582 

representation:parameter 1 31252 5.6548 0.01741 

Residuals 264 1429396   
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Table 20: The Scheirer-Ray-Hare test for the number of changes pilots suggested after 
debriefing their flights in Flight A did not identify any main or interaction effects. 

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 20559 3.6619 0.05567 

language 1 2315 0.4124 0.52077 

parameter:language 1 38 0.0068 0.93425 

Residuals 264 1476124   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 6476 1.15353 0.28281 

language 1 3379 0.60182 0.43789 

representation:language 1 5004 0.89123 0.34514 

Residuals 264 1484178   

 

y ~ representation + parameter 

representation  1 6476 1.1535 0.282811 

parameter 1 20688 3.6848 0.054911 

representation:parameter 1 6257 1.1145 0.291097 

Residuals 264 1465615   
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Table 21: The Scheirer-Ray-Hare test for the risk perception in Flight B identified parameter 
type and representation methods as main effects but no interaction effects.   

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 60657 20.2269 0.00001 

language 1 3 0.0011 0.97337 

parameter:language 1 1211 0.4038 0.52515 

Residuals 191 519904   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 22436 7.4815 0.00623 

language 1 106 0.0354 0.85082 

representation:language 1 274 0.0913 0.76259 

Residuals 191 488855   

 

y ~ representation + parameter 

representation  1 22436 7.4815 0.006233 

parameter 1 59368 19.7970 0.000009 

representation:parameter 1 11117 3.7070 0.054186 

Residuals 191 488855   
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Table 22: The Scheirer-Ray-Hare test for the number of changes pilots suggested after 
debriefing their flights in Flight B did not identify any interaction effects, but did identify 
parameter and representation as significant main effects. 

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 25102 8.6928 0.00319 

language 1 1356 0.4695 0.49321 

parameter:language 1 1568 0.5429 0.46121 

Residuals 191 532177   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 25524 8.8391 0.00295 

language 1 698 0.2419 0.62284 

representation:language 1 2196 0.7606 0.38313 

Residuals 191 531784   

 

y ~ representation + parameter 

representation  1 25524 8.8391 0.002948 

parameter 1 20688 8.3857 0.003782 

representation:parameter 1 6257 1.5725 0.209843 

Residuals 191 505923   
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Table 23: The Scheirer-Ray-Hare test for the risk perception in Flight C identified no main or 
interaction effects.   

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 214 0.07834 0.77956 

language 1 1411 0.51687 0.47218 

parameter:language 1 7110 2.60493 0.10653 

Residuals 185 504366   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 5 0.00177 0.96643 

language 1 1392 0.50986 0.47520 

representation:language 1 3995 1.46383 0.22632 

Residuals 185 507709   

 

y ~ representation + parameter 

representation  1 5 0.00177 0.96643 

parameter 1 214 0.07842 0.77945 

representation:parameter 1 3638 1.33310 0.24825 

Residuals 185 509243   
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Table 24: The Scheirer-Ray-Hare test for the number of changes pilots suggested after 
debriefing their flights in Flight C did not identify any main or interaction effects. 

y ~ parameter + language 

 Df Sum Sq. H p-value 

parameter 1 4392 1.57665 0.20924 

language 1 23 0.00826 0.92758 

parameter:language 1 84 0.03025 0.86192 

Residuals 185 519230   

 

y ~ representation + language 

 Df Sum Sq. H p-value 

representation  1 6172 2.21543 0.13664 

language 1 698 0.00834 0.92724 

representation:language 1 2196 0.07771 0.78042 

Residuals 185 531784   

 

y ~ representation + parameter 

representation  1 6172 2.2154 0.13664 

parameter 1 4357 1.5640 0.21108 

representation:parameter 1 5966 2.1417 0.14334 

Residuals 185 507234   
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Table 25: The results of the ANOVA on the risk perception responses from Flight A indicate that 
the Framing Language factor likely moved the location of the mean response. The 
Representation Method and Parameter Type factors combined may influence the results. Rows 
shaded in the darker gray correspond to parameters that are significant at the 0.05 significance 
level, with the lighter gray color used to identify rows that came close to the 0.05 significance 
level.  

Source Sum Sq. d.f. Mean Sq. F Prob>F 
Repres 3.302 1 3.30242 3.34 0.0689 
Param 0.237 1 0.23702 0.24 0.6249 
Lang 6.845 1 6.84477 6.92 0.0090 
Repres*Param 6.980 1 6.98005 7.05 0.0084 
Repres*Lang 0.072 1 0.07184 0.07 0.7878 
Param*Lang 0.426 1 0.42588 0.43 0.5124 
Error 258.245 261 0.98945   
Total 275.478 267    

 

Table 26: The results of the ANOVA on Flight A indicate that there are no main effects or 
interaction effects that impact the number of changes that pilots recommended as a result of 
their debrief. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 
Repres 1.574 1 1.57392 0.86 0.3544 
Param 5.041 1 5.04114 2.76 0.098 
Lang 0.724 1 0.72436 0.4 0.5296 
Repres*Param 3.306 1 3.30556 1.81 0.1799 
Repres*Lang 2.083 1 2.09344 1.14 0.2867 
Param*Lang 0 1 0.0005 0 0.9869 
Error 477.216 261 1.82841   
Total 490.985 267    
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Table 27: The results of the ANOVA on the risk perception responses from Flight B differ from 
Flight A’s results. We observe that the Representation Method and Parameter Type factors 
moved the location of the mean response, but the Framing Language factor did not. Rows 
shaded in the darker gray correspond to parameters that are significant at the 0.05 significance 
level, with the lighter gray color used to identify rows that came close to the 0.05 significance 
level. 

Source Sum Sq.  d.f.  Mean Sq. F Prob>F 
Repres 8.456 1 8.4559 6.92 0.0092 
Param 28.121 1 28.1212 23.01 0.0000 
Lang 0.08 1 0.0805 0.07 0.7978 
Repres*Param 4.719 1 4.7194 3.86 0.0509 
Repres*Lang 0.047 1 0.0472 0.04 0.8445 
Param*Lang 0.045 1 0.0452 0.04 0.8476 
Error 229.772 188 1.2222   
Total 270.995 194    

 

Table 28: The results of the ANOVA on Flight B indicate that representation type and 
parameter type impacted the number of changes that pilots recommended as a result of their 
debrief. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 
Repres 6.016 1 6.0157 7.86 0.0056 
Param 8 1 8.00033 10.45 0.0014 
Lang 0.167 1 0.1666 0.22 0.6414 
Repres*Param 1.363 1 1.363 1.78 0.1836 
Repres*Lang 0.243 1 0.24281 0.32 0.5739 
Param*Lang 0.866 1 0.86562 1.13 0.2889 
Error 143.882 188 0.76533   
Total 160.595 194    
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Table 29: As expected, the ANOVA on the risk perception responses from Flight C did not identify 
any parameters that influenced the results. 

Source Sum Sq.  d.f.  Mean Sq. F Prob>F 
Repres 0.012 1 0.01190 0.01 0.9123 
Param 0.150 1 0.14959 0.15 0.6961 
Lang 0.584 1 0.58448 0.60 0.4404 
Repres*Param 1.399 1 1.39905 1.43 0.2331 
Repres*Lang 1.587 1 1.58670 1.62 0.2043 
Param*Lang 2.379 1 2.37943 2.43 0.1205 
Error 177.911 182 0.97753   
Total 184.106 188    

 

Table 30: The results of the ANOVA on Flight C indicate that there are no main or interaction 
effects that impact the number of changes pilots say they would make to an upcoming flight. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 
Repres 2.503 1 2.50293 2.00 0.1593 
Param 2.993 1 2.99313 2.39 0.1240 
Lang 0.012 1 0.01215 0.01 0.9217 
Repres*Param 3.130 1 3.13021 2.50 0.1158 
Repres*Lang 0.274 1 0.27442 0.22 0.6404 
Param*Lang 0.120 1 0.12006 0.10 0.7573 
Error 228.142 182 1.25353   
Total 236.550 188    
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Table 31: The distributions of the character length in the total changes suggested are very 
dispersed, with no clear or consistent differences between them for different factors. 

 Changes Character Length 

 Representation Method 

 Graphical Numerical 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 49.6992 48.1149 38 79.75 52.4483 49.0616 42 77.25 

B 35.9780 33.7563 29 54.75 53.3077 43.0121 45.5 47.5 

C 51.1566 44.0732 45 79 54.4906 44.5015 49 48 

 Parameter Type 

 Performance Safety 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 55.6084 51.0366 48 79.75 46.1280 45.2311 31 71.75 

B 37.4752 32.9067 32 55 53.5426 44.8209 47.5 56 

C 48.0968 39.0713 43 66 57.8021 48.4328 50.5 62 

 Framing Language 

 Safety-centric Risk-centric 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 54.8148 47.4199 49 83.75 47.5038 49.5933 31 73.25 

B 46.1584 40.2397 38 66.5 44.2128 39.5643 38.5 48 

C 51.4021 44.3278 44 75 54.7391 44.2989 49.5 53.5 
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Risk Perception Linear Regression 

I ran the full complement of all possible factor combinations to estimate all of the main effects 

between the factors and the results, as well as any interaction effects between factors. The 

full factorial design will have three main effects, three two-factor interactions, and one three-

factor interaction. To model the response variable, I use a linear regression model of the form 

of Equation 4: 

𝑌 = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 + 𝛽3𝛸3 + 𝛽12𝛸1𝛸2 + 𝛽13𝛸1𝛸3 + 𝛽23𝛸2𝛸3 + 𝛽123𝛸1𝛸2𝛸3 + 𝜀 (4) 

 

The full factorial design will allow us to estimate all eight βi coefficients {𝛽0, … , 𝛽123}. The 

terms 𝛸1𝛸2, 𝛸1𝛸3, and 𝛸2𝛸3 represent the possible two-order interactions between variables 

and 𝛸1𝛸2𝑋3 represents the three-order interaction.  

The next step in the survey analysis was to therefore fit a linear model to the data and 

determine whether any of the coefficients indicate main or interaction effects. I fitted three 

different models; one for each flight, as described by Equation 5. The stepwise linear model 

started by including all coefficients before removing any coefficients that were not 

significant to the 95% level one by one. All X variables are categorical and take values of 1 or 

0. 

𝑌 = 𝛽0 + 𝛽Rep𝛸Rep + 𝛽Param𝛸Param + 𝛽Lang𝛸Lang + 𝛽Rep:Param𝛸Rep𝛸Param

+ 𝛽Rep:Lang𝛸Rep𝛸Lang + 𝛽Param:Lang𝛸Param𝛸Lang + 𝜀 
(5) 
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Table 32: The linear models did not fit the data very well, but they did indicate which factors 
affect the responses. As expected, the linear model for Flight C only kept the intercept, making 
it a constant model. The linear model for Flight A found all three factors to be relevant as well 
as an interaction effect (F-statistic vs. constant model: 4.25, p-value = 0.00238) and Flight B 
found two of the three factors to have effects, and both of them together produced an 
interaction effect (F-statistic vs. constant model: 11.4, p-value = 6.79e-07).  

Flight 
R2; 

R2(adj)  
RMSE  βi p-value 

95% Confidence 
Interval 

A 
0.0607; 
0.0464 

0.992 

β0 2.63820 1.3125e-53 [2.3742; 2.9022] 
βRep 0.54795 0.0023542 [0.1967; 0.8992] 
βParam 0.38600 0.0203610 [0.0603; 0.7117] 
βLang 0.32130 0.0089993 [0.0809; 0.5617] 
βRep:Param -0.65162 0.0079925 [-1.1317; -0.1716] 
βRep:Lang - - - 
βParam:Lang - - - 

B 
0.152; 
0.138 

1.1 

β0 3.43140 3.717e-55 [3.1283; 3.7344] 
βRep -0.10579 0.641950 [-0.5539; 0.3423] 
βParam -0.45024 0.037758 [-0.8747; -0.0257] 
βLang - - - 
βRep:Param -0.62534 0.048743 [-1.2472; -0.0035] 
βRep:Lang - - - 
βParam:Lang - - - 

C   0.99 

β0 2.93120 3.3654e-95 [2.7892; 3.0732] 
βRep - - - 
βParam - - - 
βLang - - - 
βRep:Param - - - 
βRep:Lang - - - 
βParam:Lang - - - 
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Figure 36: The respondents to Flight B reported that they would make a total of 237 changes 
to an upcoming flight after reviewing their debrief. The pilots referred to proper takeoff speed 
and power, and suggested they would take off with full throttle at a higher RPM, or even abort 
the flight.  
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Figure 37: The respondents to Flight C reported that they would make a total of 266 changes 
to an upcoming flight after reviewing their debrief. The pilots talked a lot about the runway 
centerline and the crosswind conditions. They also mentioned that the winds favored a different 
runway and that the appropriate wind correction could keep the plane on the centerline.  


