
 
 

COMMUNICATING DATA-DRIVEN RISK INFORMATION TO PILOTS 

 
Nicoletta Fala 

Purdue University 

West Lafayette, IN 

 

Karen Marais 

Purdue University 

West Lafayette, IN  

 

General Aviation safety is a pressing concern. In this research, we consider the 

factor that appears most often in accidents: the pilot. Newly-licensed pilots can fly 

without their instructor, potentially as the only or most experienced pilot in the 

aircraft. Commercial debrief products use technology in the flight deck to collect 

data and provide post-flight visualizations for performance reviews, but do not 

discuss flight safety. To manage risk, though, pilots need to perceive the risk 

associated with a situation before deciding whether they are willing to accept it. 

Safety-driven post-flight feedback may help address performance. However, it is 

not clear whether and how the way we present feedback affects how pilots 

perceive risk, or what the best way is. We designed and disseminated a survey to 

evaluate the communication factors that affect pilots’ risk perception. In this 

paper, we evaluate whether different representation methods affect relative risk 

perception among pilots.   

 

General Aviation (GA) consists of all civilian aircraft operations other than commercial 

air transport operations and it covers a range of activities, both commercial (business aviation) 

and non-commercial (recreational and flight training operations). In 2017, GA in the United 

States was responsible for 990 non-commercial fixed-wing accidents (AOPA, 2018a). Non-

commercial GA, in particular, has been contributing disproportionately to the aviation accident 

rate, with an accident rate of 5.57 accidents per 100,000 flight hours, significantly higher than 

the rate of 2.33 accidents per 100,000 flight hours in commercial fixed-wing GA. Similarly, 

20.3% of non-commercial fixed-wing accidents are fatal; almost double the 10.4% of 

commercial fixed-wing operations. Most GA accidents (~74%) are attributed to pilot-related 

causes—they occur because of the pilot’s action or inaction.  

 

Continuing to provide pilots with feedback on their flying even after they finish their 

training and are no longer flying with an instructor (and potentially flying as the sole pilot or the 

most experienced pilot in the aircraft) can improve GA safety. Rantz et al. (2009) evaluated how 

feedback and praise can be used to increase the extent to which pilots use checklists accurately, 

with some participants in their study showing abrupt improvements in performance after 

intervention. Commercial products that leverage the addition of technology in the cockpits of 

small aircraft to collect flight data and present pilots with a visualization of their flights, like 

CloudAhoy and CirrusReports, are becoming more prevalent. However, these products do not 

discuss risk or flight safety. O’Hare’s Aeronautical Risk Judgment Questionnaire (ARJQ) 

suggests that pilots display low levels of risk and hazard awareness, and an optimistic self-

appraisal of their abilities (O’Hare, 1990). If pilots do not identify risk that can be mitigated in 
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their flying, we cannot expect that they will improve. To manage risk, pilots need to perceive the 

risk associated with a situation or hazard and decide whether they are willing to accept that level 

of risk in each situation (Hunter, 2002). Safety-driven post-flight feedback may help facilitate 

risk management in subsequent flights, by alerting pilots to potentially hazardous situations. 

However, no one has considered what the best way is to present risk-related feedback in the pilot 

population, and we do not know whether presentation format affects how they perceive risk.  

 

Using flight data to proactively improve GA safety requires that we are able to (1) identify 

behaviors that may put the safe outcome of a flight at risk, (2) detect those behaviors in the 

available flight data, and (3) inform the pilot in a way that helps them improve in their future 

flights. We use a state-based representation of historical aviation accidents to define a list of 

undesirable events or behaviors that we need to communicate to the pilots, in the form of states 

and triggers. Each flight consists of states, which can be nominal or hazardous, and trigger events 

(Rao, 2016). A state is a period of time during which the system, consisting of the aircraft and 

the pilot, exhibits a particular behavior, and a trigger is an event that causes the system to 

transition between two states. We use flight data to retrospectively detect these states and 

triggers, upon completion of the flight, by mapping parameters or combinations of parameters 

that can be tracked in the flight data to the hazardous states and triggers defined. We then present 

any detected hazardous states to pilots in the form of post-flight debrief feedback, with the goal 

of using the information to improve safety on subsequent flights. To evaluate the effectiveness of 

feedback in different representation formats, we used an anonymous web-based survey where a 

sample of pilots self-debriefed flights with safety information presented in different ways, and 

assessed the risk of the flight in each case. We also asked the pilots how likely they are to make 

changes to their flying as a result of the information they reviewed, to evaluate feedback 

effectiveness in terms of motivation to change unsafe behaviors. We demonstrated this approach 

using the hazardous states that are specific to the takeoff phase of flight. 

  

Cognitive Biases in Risk Perception Among Pilots 

 

We hypothesize that pilots will perceive the risk of their flight depending on how 

information is presented to them. While research in the medical, education, and economics fields 

have established guidelines that designers can use when communicating risk to the general 

population, the pilot sub-population is understudied, so we do not know which cognitive biases 

affect their understanding. We consider three factors that may impact their risk perception: 

framing language, representation method, and parameter type. Framing language corresponds to 

whether we discuss risk in terms of safety-centric language or risk-centric language. For 

example, we might refer to a safe flight as being either ‘very safe’ or ‘not risky’. Representation 

methods refer to how we present data: graphically or numerically/textually. For example, we can 

communicate how much runway distance was remaining at takeoff numerically (2,500 ft), or 

graphically on the airport diagram. Lastly, parameter type refers to how we frame the same 

metric. For example, there are two ways to measure deviation from the runway centerline: the 

distance between the aircraft’s longitudinal axis and the runway centerline, or the distance from 

the aircraft’s longitudinal axis to the edge of the runway. The former represents how close the 

pilot was to the ideal condition (with the aircraft’s longitudinal axis aligned with the centerline); 

the latter measures how close the pilot was to being involved in an incident (runway excursion or 
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collission with an object). While both versions represent the same thing mathematically, 

parameter type can affect how pilots perceive their own flight performance in terms of risk. 

 

To investigate how these three factors impact safety-driven feedback effectiveness, we 

created a 23 full-factorial design experiment. Table 1 shows the eight resulting treatment 

combinations. Using de-identified flight data from a Garmin G1000 display and the CloudAhoy 

flight visualization software, we designed interactive prototype debrief screens that include 

safety-driven feedback. Figure 1 shows how we altered the commercial screens to add risk 

information in two popup windows; (a, top right) provides the pilot with a list of behaviors that 

could potentially appear in a flight, and (b, center) displays parameters that characterize the 

selected behavior. The survey is available at www.nicolettafala.com/survey and an example of 

an interactive prototype is available at www.nicolettafala.com/debriefexample. We repeated this 

process for three different flights, and survey respondents could respond to as many of the three 

flights as they wished.  

 

Table 1. 

The 23 full-factorial design evaluates main and interaction effects among the three factors.  

 

Treatment 

Group 

Framing 

Language 

Representation 

Method 
Parameter Type 

Responses  

[Flight A] 

1 safety-centric graphical performance 35 

2 risk-centric graphical performance 31 

3 safety-centric numerical performance 44 

4 risk-centric numerical performance 33 

5 safety-centric graphical safety 23 

6 risk-centric graphical safety 34 

7 safety-centric numerical safety 33 

8 risk-centric numerical safety 35 

 

To evaluate feedback effectiveness, we asked respondents six questions: (Q1) Given the 

information presented to you, how safe would you say this takeoff was? [5-point Likert scale] 

(Q2) In this takeoff, which of the following would concern you, if any? [Centerline deviation, 

Rotation airspeed, Engine RPM, Takeoff distance, Wind] (Q3) Optional Comments. (Q4) What 

changes (up to 5) do you think you could make to an upcoming flight after the information 

presented here, if any? [Freeform text, up to 5 changes] (Q5) How likely are you to make each of 

these changes to an upcoming flight? [5-point Likert scale for each change] (Q6) How important 

do you think each of these changes is to improving safety on takeoff? [5-point Likert scale for 

each change] To evaluate the impact of a risk-centric framing language, we reworded these 

questions, replacing safe with risky (How risky would you say this takeoff was). 

 

We measure feedback effectiveness in two ways: (1) did the pilot understand how safe or 

unsafe their flight was based on their responses to Q1 and Q2, and (2) how motivated are they  to 

change their behaviors to mitigate the risk in their flying activities based on responses to Q4, Q5, 

and Q6? Q1 captures how different treatment groups introduce cognitive biases in pilots and is 

subjective—we expect to see differences in the distributions of responses among the different 

treatment combinations. Q2 can identify whether pilots are perceiving risk in the correct 
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categories more objectively; that is, if we deem a flight to be unsafe due to high crosswinds, did 

the pilots identify high crosswinds as an issue? 

 

 
Figure 1. We supplemented the visualization of the flight data from CloudAhoy with information 

on the safety of the flight on five parameters.  

Survey Results and Analysis 

 

We used aviation mailing lists and groups to recruit participants and encouraged snowball 

sampling to maximize our responses. Approximately 70% of our respondents provided us with 

demographic information. Our sample consisted of 71% male and 26% female pilots, 76% of 

whom have completed at least a 4-year degree. Private pilots and commercial pilots made up the 

majority of the sample, at 49% and 30% respectively, with 58% of the pilots being instrument-

rated. Most respondents (64%) fly primarily aircraft with steam gauges, fly at least weekly (59%) 

and have never used commercial debrief or flight visualization products like CloudAhoy (88%). 

We ended up with 268 responses for the first flight scenario, 195 for the second flight, and 189 

for the third flight. Since the first flight in the survey got the maximum number of responses, we 

focus our initial data analysis on that flight before comparing results with the other two flights.  

 

 Figure 2 depicts the raw responses to Q1 that correspond to each group—the darker the 

marker, the higher the frequency of that particular response. The average response (marked in 

orange) in each treatment group tends to oscillate around the neutral response of 3 out of 5 on the 

risk Likert scale, but the spreads are also different, with the mean of the eighth group appearing 

lower than the means of the other treatment groups. We processed the data for the first flight to 

identify the response to Q1 and the treatment group it belongs to for each respondent and used 

ANOVA to test for the difference in treatment groups. The probability of the response means 

being equal for different treatment groups is < 2%. We also ran the Tukey procedure to identify 

which treatment groups had significantly different responses. 
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Figure 2. The responses for the first flight show means and spreads that visually vary 

slightly among the eight treatment combinations. Treatment group 8 biased the respondents 

towards a less risk-averse response, and treatment groups 3 and 5 show a more risk-averse bias.   

 

Our ANOVA test indicates that there is a difference between the eight groups, with a p-

value of 0.0170. Table 2 summarizes the ANOVA results. The box plot in Figure 2 suggests that 

the means for treatment groups 3 and 5 are higher than the mean for treatment group 8. Tukey’s 

HSD test, used in conjunction with the ANOVA results, compared all possible pairs of means 

and identified which ones are significantly different from each other. The test identified that 

some treatment combinations—3 and 8 and 5 and 8—are different at the 0.05 significance level. 

Table 3 shows the difference between the means of these groups. Treatment combinations 3 and 

5 have the safety-centric framing language in common, whereas treatment combination 8 is 

framed in terms of risk. This discrepancy suggests that asking a pilot how safe their flight was 

vs. how risky their flight was can potentially make the pilot more risk-averse.  

 

Table 2. 

  

We reject H0 based on the ANOVA results. The means differ between the different groups. 

   

Source DF Sum of Squares Mean Square F Value Pr > F  

Model 7 17.3332430 2.4761776 2.49 0.0170  

Error 260 258.1443690 0.9928630    

Corrected Total 267 275.4776119     

 

Table 3.   

Tukey’s studentized range (HSD) test for the response variable at 𝑎 = 0.05. The table only 

shows those treatment groups that are considered statistically different.  

   

Treatment Group 

Comparison 

Difference 

Between Means 
Simultaneous 95% Confidence Limits 

 

5 – 8  0.9652 0.1479 1.7825  

3 – 8 0.7409 0.0513 1.4305  

 

We ran a second ANOVA test to evaluate whether pilots responded differently to 

messages framed in a risk-centric language and safety-centric language. The probability of the 
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two means being equal is approximately 1%, with the safety-centric language moving the 

location of the mean towards a more risk-averse response. 

  

Conclusion and Future Work 

 

Our initial results indicate that pilots are subject to certain cognitive biases that will 

impact the way they perceive their flight risk. The limitation to this work is that the results are 

based on one flight that is repeated for all participants—if the level of risk in the flight or the 

specific states in the flight affect risk perception, our results may be affected. The next step for 

this research, therefore, is to analyze different flights (the second and third flight in our survey) 

to evaluate whether the conclusions are flight-specific or valid across the board. We will then 

investigate the second part of our definition of “feedback effectiveness”—does the way we 

present safety information impact how motivated pilots are to change their behaviors? Our 

response variable metrics for motivation are (a) the number of changes suggested, (b) the 

average willingness to change among the suggested changes, and (c) the maximum willingness 

to change among the suggested changes. 
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