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You start with a bag full of luck 

and an empty bag of experience. 

The trick is to fill the bag of experience 

before you empty the bag of luck. 
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ABSTRACT 

Author: Fala, Nicoletta. PhD 

Institution: Purdue University 
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Title: Data-Driven Safety Feedback as Part of Debrief for General Aviation Pilots. 

Committee Chair: Karen Marais 

 

General Aviation (GA) is the foundation of most flying activities and the training ground for 

civilian pilots, both recreational and professional. However, the safety record for GA is lacking 

compared to that of commercial aviation. Approximately 75% of accidents each year involve 

personnel factors, that is, even if the pilot was not the cause of the accident, they could have done 

something to either prevent it or improve the outcome.  

 

In this research, I aim to improve GA safety through safety-driven post-flight debrief that 

encourages pilots to consider the risk in their flights and identify behavioral changes that could 

make their flying safer. Providing pilots with a debrief tool that they can use with or without a 

flight instructor requires that we know both what to communicate, and how to communicate it. 

Risk communication heuristics and biases have not been researched in the context of aviation and 

flight training and we therefore do not know how pilots understand or respond to debrief. 

 

To achieve the goals of this work, I used a three-step process: (1) identify events that may put the 

safe outcome of a flight at risk, (2) detect those events in flight data, and (3) inform the pilot in a 

way that helps them improve in their future flights. I use a state-based representation of historical 

aviation accidents to define a list of events or behaviors that need to be communicated to the pilots, 

in the form of states and triggers. I use flight data to retrospectively detect these behaviors upon 

completion of the flight, by mapping parameters or combinations of parameters that can be 

calculated and tracked in the flight data to the hazardous states and triggers defined. To present 

these events to pilots, I created a prototype interactive debrief tool with risk information that I use 

in a survey to evaluate the effectiveness of feedback in different representation formats. 

Specifically, I evaluate the impact of three factors: representation method (graphical and 
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numerical), parameter type (safety and performance parameters), and framing language (risk-

centric and safety-centric).  

 

I disseminated the survey via aviation mailing lists, type groups, flying clubs, and flight training 

providers, end received 268 responses. The survey analysis showed that the feedback 

representation does affect its effectiveness in terms of risk perception, but not when it comes to 

pilots’ motivation to change. The lessons learnt from this survey can be used in creating additional 

surveys that delve further into risk communication biases and our understanding of how pilots 

perceive risk and feedback. 
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1. INTRODUCTION 

The goal of this work is to improve GA safety proactively by providing pilots with feedback that 

will guide them towards improvements in their future flights. This Chapter motivates the current 

research and discusses past research upon which build my work.   

 Background and Motivation 

Aviation is a fast-growing industry, with IATA expecting that air passengers will double to 7.8 

billion in 2036 (IATA, 2017). The FAA forecasts an average 1.9% U.S. carrier passenger growth 

over the next 20 years (FAA, 2018). The increasing demand for air travel is creating an increasing 

need for pilots—Boeing (2018) reports that North America alone will require 206,000 new pilots, 

with 790,000 new pilots required worldwide. General Aviation (GA), the foundation of most flying 

activities, is usually the starting point for new pilots, both recreational and professional, while they 

are undergoing their initial training. While the FAA forecasts that the GA turbine and rotorcraft 

fleets will grow, they also forecast that the fixed-wing piston GA aircraft fleet will shrink at an 

average annual rate of −0.8%, as a result of the increasing cost of aircraft ownership and an aging 

fleet. The light-sport-aircraft category, however, is forecast to grow at an annual rate of 3.6% (FAA, 

2018). When it comes to the pilot population, the FAA projects that the number of active GA pilots 

will decrease by ~22,600 pilots, whereas the Airline Transport Pilot (ATP) category is expected 

to increase by the same number. Stakeholders in aviation have voiced concerns that the supply of 

available and qualified pilots is inadequate to support the current or future demand from U.S. 

airlines, both at the regional and mainline level, resulting in a need to reduce flights or eliminate 

routes to some markets (U.S. GAO, 2018). The urgent need for more pilots at the regional airline 

level is creating a deficit in the number of flight instructors available to train new pilots and 

therefore the time they have available to spend with students, making it difficult for the industry 

to meet future needs in terms of growth and safety rates.  

 

To keep up with the demand for new pilots amidst the economic obstacles, we need to train a 

higher number of pilots faster, which could result in compromised safety. Even though GA safety 

has improved over the past years, several hundred pilots still lose their lives in GA accidents each 



13 

year. In 2017, fixed-wing GA had a total of 966 accidents, 167 of them fatal (AOPA Air Safety 

Institute, 2018). Figure 1 and Figure 2 show accident trends for non-commercial fixed-wing GA 

and commercial fixed-wing GA for the past ten years. If the number of operations increases to 

accommodate for the higher projected demand, we can expect to see more accidents and more 

fatalities if the accident rate remains constant, making GA safety a pressing concern.  

 

Risk management is a decision-making process used to identify hazards systematically, assess the 

degree of risk, and determine the best course of action. While everything involves risk, 

unnecessary risk that has no possible benefit should not be accepted (FAA, 2008). The level of 

risk is most often characterized in terms of severity and probability, where severity refers to the 

consequences of an event occurring, and probability is the likelihood of the event. Risk includes 

identified risks, which have been determined and can therefore be mitigated, and unidentified risks, 

some of which become identified if an accident or incident happens, and some of which are never 

known. The level of risk may vary for each pilot, depending on their experience level and 

certifications. For example, a flight in Marginal VFR (MVFR) conditions may be risky for a VFR 

pilot, since the conditions might become Instrument Meteorological Conditions (IMC) during the 

flight. However, for an IFR pilot, the same flight may not be as risky, since they have the training 

to complete the flight, even if IMC occurs. 

 

Figure 1: Non-commercial GA results in approximately ten times as many accidents as commercial 

GA. Although there is a large decline in 2013 for non-commercial GA, the number of accidents 

has remained stable since then. Adapted from (AOPA Air Safety Institute, 2018).   
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Figure 2: The FAA provides estimates for the number of hours the fleet flew under each operation 

category per year. We can use those numbers to calculate accident rates per 100,000 flight hours. 

We observe that non-commercial GA still ranks higher than commercial GA in terms of how many 

accidents they encounter. Adapted from (AOPA Air Safety Institute, 2018).  

 

There are multiple approaches to improving safety in aviation, spanning aircraft and pilot 

certification, aircraft technology, operation, and regulation. Angle of attack indicators, for example, 

were designed to help prevent stalls and improve approach by providing a visual representation of 

the lift. Ballistic recovery systems (or parachutes) for small airplanes can be deployed to lower the 

aircraft to the ground, decreasing fatalities in parachute-equipped aircraft accidents (Alaziz et al., 

2017). Some of the advancements to aviation safety were the result of NTSB recommendations 

after accidents. The NTSB has issued over 5000 aviation-related safety recommendations since its 

beginning (Sumwalt & Dalton, 2014). To understand the causes of accidents and incidents, the 

FAA uses data reactively (after the incident) while implementing a proactive approach (the Safety 

Management System (SMS) approach) where safety personnel analyze data and identifies and 

mitigates risks before they result in accidents. The FAA began implementing the SMS approach 

in 2005 to analyze aviation safety data and identify conditions that may lead to accidents/incidents, 

and mitigate the risks through changes to organization, processes, management, and culture 

(Dillingham, 2013). When it comes to GA, there are challenges that incumber the FAA’s efforts 

to assess and improve safety. The GA fleet, which makes up for 90% of the U.S. civil aircraft fleet, 

is very diverse, with more than 220,000 aircraft in the active GA fleet. The FAA is also faced with 
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GA data limitations; estimates of annual GA flight hours may be unreliable (for example, there is 

no data provided for 2011, making it impossible to calculate accident rates for that year, as shown 

in Figure 2), and information on GA pilots in inadequate. The FAA is therefore unable to determine 

the effect of training on pilot behavior and competence, or link training to the likelihood of an 

accident (Dillingham, 2013). 

 

Recent advances in flight training technology provide opportunities to rethink training operations 

in terms of efficiency and safety. All civilian flight students undergo their initial pilot training in a 

school that falls into one of three categories: collegiate aviation, non-collegiate vocational pilot 

school, or instructor-based pilot school. Collegiate aviation schools offer a 2- or 4-year 

undergraduate degree in an aviation major along with the commercial pilot certificates and ratings. 

Vocational pilot schools are very structured in their training sequence and curriculum. Instructor-

based schools are more flexible, and the training sequence and curriculum depends on the student’s 

needs. All pilots must meet minimum certification standards independently of the type of training 

they undertook. One of the key challenges of collegiate aviation schools is the recruitment and 

retention of flight instructors. Collegiate flight programs implement new technologies that help 

them align their training with airline operations (Babb, 2017). As a result, collegiate fleets tend to 

be equipped with Flight Data Recorders (FDRs) and SMS programs, with a streamlined electronic 

dispatch program and use of Electronic Flight Bags (EFB) so that the school can keep track of the 

flight operations. When trying to improve the efficiency and effectiveness of flight training 

operations, we can use the technology that pilots have in the aircraft with them.  

 

Airlines may use Flight Operational Quality Assurance (FOQA) programs to attempt to improve 

both the safety and efficiency of their operations. FOQA programs analyze exceedances, which 

are deviations from defined expectations (Chidester, 2003). If an airplane is equipped with flight 

data monitoring equipment, the FOQA program will point out if any parameters exceeded 

boundary values (Veillette, 2014). Implementing a similar program in GA may improve safety and 

operational performance, maintenance procedures, and flight training (Mitchell et al., 2007). The 

NTSB highlighted the need to expand the use of recorders to enhance transportation safety in 2016 

(NTSB, 2016). However, avionics in the GA fleet are not as advanced as those in commercial 

airliners. The size, weight, and cost of FDRs has precluded their use in GA in the past. Nevertheless, 
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with improvements in technology, more and more small aircraft are equipped with FDRs and glass 

cockpit displays. Smartphones and tablets have made their way into the cockpit through EFB 

applications that help pilots with flight planning and resource management. Therefore, even in 

aircraft that are not fully equipped, we can still record some information about the flight. We can 

use the flight data to proactively improve GA safety both on an individual and community level 

by detecting unsafe behaviors, instead of reactively making improvements based on lessons 

learned from aviation accidents. Using multiple sources of data from equipment available would 

help address some of the challenges the FAA is facing pertaining to flight information data.  

 

Flight schools are trying to move to a more data-centric instructional approach. Utah State 

University uses the avionics suite on their fleet to record and monitor flight data that they then use 

for training and safety. When flight data indicates that any flight exceeded limitations five or more 

times during a flight, the student and instructor are required to meet with the safety committee for 

remedial training (Utah State University, 2017). There is an opportunity for flight instructors to 

use the data capabilities of aircraft in post-flight debrief and objective evaluation. Commercial 

products that take advantage of the addition of technology in the flight decks of small aircraft to 

collect flight data and present pilots with a visualization of their flights, like CloudAhoy and 

CirrusReports, are becoming more prevalent in debrief.  

At the same time, many GA pilots are flying recreationally and do not have the same resources as 

pilots who are still pursuing flight training or professional pilots. After they complete the necessary 

level of training, recreational pilots are no longer flying with an instructor. Instead, they are 

potentially flying as the most experienced pilot in the aircraft, and often the sole pilot. We can use 

flight data to continue providing pilots with debrief, like they would if they were still pursuing 

flight training. A good debrief “allows individuals to discuss individual and team-level 

performance, identify errors made, and develop a plan to improve their next performance” (Salas 

et al., 2008, pp. 518-527) so, by eliminating the debrief aspect of flying, we are removing the 

continuous learning from the flight experience. The natural order of human processing consists of 

experiencing something, then reflecting on it, followed by discussing the event with others, before 

learning from it and modifying behaviors (Fanning & Gaba, 2007). Although pilots may naturally 

reflect after a flight where they learnt something (satisfying the reflection aspect of debrief), it will 

likely not be systematic, and it may not occur at all, depending on the pilot’s ability to focus. 
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Debrief may move through three stages: description, analysis, and application. Without a facilitator 

(in this case, a flight instructor) it may be hard to move on from the description phase (Fanning & 

Gaba, 2007). Debrief, as a learning tool, is designed as a systematic approach to reflection and 

discussion, and has been shown to improve performance (Tannenbaum & Cerasoli, 2013).  

 

One potential way to improve GA safety would therefore be to continue providing pilots with 

debrief and feedback on their flying even beyond their flight training period, to encourage them to 

analyze their flights in more detail and learn from events in the flight. In the absence of a flight 

instructor, debrief has to be driven by flight data. Ideally, debrief tools can help the “post-instructor” 

pilot get a debrief like what they would be getting with an instructor. At the same time, research 

directed towards the development of such tools may also make flight training more efficient, by 

giving instructors a data-driven approach to help guide their debrief conversation. Commercial 

debrief products, such as CloudAhoy, focus on flight visualization and refrain from any discussion 

of risk, flight safety, or performance. By not discussing significant elements of the flight, such as 

safety, and focusing instead on visualization, they may not be pushing pilots towards the 

application stage of debrief. O’Hare’s Aeronautical Risk Judgment Questionnaire (ARJQ) showed 

that pilots displayed low levels of risk and hazard awareness, and an optimistic self-appraisal of 

their abilities (O'Hare, 1990), suggesting that pilots are likely to dismiss their own risk as being 

inconsequential. For example, if a pilot practices a maneuver on a solo flight while collecting data, 

and tries to visualize the maneuver after landing, using a product like CloudAhoy, they may not 

realize the extent of their own mistakes or the risk in their flight. To manage risk, pilots need to 

perceive the risk associated with a situation or hazard and decide whether they are willing to accept 

this amount of risk in this situation (Hunter, 2002). Safety-driven post-flight feedback may help 

facilitate risk management in subsequent flights, by alerting pilots to potentially hazardous 

situations. However, we do not know how pilots respond to debrief or whether different formats 

affect their response. 

 Research and Thesis Outline 

In this research, to help address the need for safer pilots, I take a quantitative approach to 

evaluating whether the presentation format used in the risk communication part of debrief matters 

among pilots in terms of how they perceive it. Providing pilots with a debrief tool that they can 
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use with or without a flight instructor requires that we know (1) what to communicate, and (2) how 

to communicate it. To achieve this goal, I used a three-step process: (1) identify events that may 

put the safe outcome of a flight at risk, (2) detect those events in flight data, and (3) inform the 

pilot in a way that helps them improve in their future flights. To evaluate how to best inform the 

pilot of their unsafe events, I created a survey that I disseminated among pilots. The survey allows 

pilots to use a prototype tool that consists of modified CloudAhoy screens and evaluate the 

effectiveness of debrief feedback in each case. While this research addresses a small part of the 

bigger problem, it provides a starting point where we can build the rest of the work required in 

providing pilots of different aircraft and of various skill levels debrief opportunities that may keep 

them safer.  

 

Figure 3 shows the three different parts of this work with their different sub-tasks.  

 

 

Figure 3: This research is divided in three sections. The accident analysis section identified events 

that tend to appear in accidents. Flight data analysis then aimed to detect these events in flight data. 

In this research, I mainly used Garmin G1000 flight data. The last section, risk communication, 

evaluated how to best communicate risk information to pilots through a debrief survey 

disseminated among different aviation groups. 

 

In this thesis, structured as follows, I focus on how we can use different sources of data to make 

the most of what is available in GA in proactively communicating risk information to pilots.   

 

Chapter 1 has introduced the challenges in GA safety and how they affect the research.  
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The purpose of Chapter 2 is to describe the flight data that I use and explain how we can counteract 

some of the challenges with data quality or quantity.  

 

Chapter 3 maps introduces the hazardous state model and maps accident information, in the form 

of hazardous states and triggers, to events and parameters that we can calculate and detect in 

various forms of flight data.  

 

I use a state-based representation of historical aviation accidents to define a list of events or 

behaviors that need to be communicated to the pilots, in the form of states and triggers. Each flight 

consists of states, nominal or hazardous, and trigger events (Rao, 2016). A state is a period of time 

during which the system, consisting of the aircraft and the pilot, exhibits a particular behavior, and 

a trigger is an event that causes the system to transition between two states. Hazardous states do 

not always result in accidents but preventing the hazardous states will also prevent the accident. In 

this research, I focused on the hazardous states that appear in accidents that occur during the takeoff 

phase of flight.  

 

I use flight data to detect these behaviors, or events, retrospectively upon completion of the flight, 

by mapping parameters or combinations of parameters that can be calculated and tracked in the 

flight data to the hazardous states and triggers defined.  

 

Chapters 4, 5, and 6 deal with the communication aspect of the work. Chapter 4 discusses the 

literature on flight debrief and cognitive biases in risk communication and introduces different 

debrief representations that I use to communicate information on hazardous states and triggers to 

pilots.  

 

Chapter 5 goes over the work in setting up an experiment to determine whether different 

representation methods affect how pilots perceive the feedback in their flights. I present any 

detected states to pilots in the form of post-flight debrief feedback, with the goal of using the 

information to improve performance on subsequent attempts of the same tasks. In this chapter, I 

created a prototype interactive debrief tool with risk information based on CloudAhoy screens. To 

evaluate the effectiveness of feedback in different representation formats, I used an anonymous 
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web-based survey where a sample of pilots self-debrief flights with safety information presented 

in different ways and assess the risk of the flight in each case. The survey also asked the pilots 

how likely they are to make changes to their flying as a result of the information they reviewed, to 

evaluate feedback effectiveness in terms of motivation to change unsafe behaviors. I demonstrated 

this approach on the hazardous states that are specific to the takeoff phase of flight. In this Chapter, 

I also discuss survey design decisions and their potential implications on the results.  

 

Chapter 6 analyzes and discusses the results from a total of 268 survey responses and evaluates 

the effect of the different risk representations on risk perception and feedback effectiveness. I 

found that different presentation methods do impact risk perception. They survey asked pilots to 

debrief a total of three flights—the effects of the different presentation methods varied depending 

on the flight, suggesting that further work is needed to determine how to talk to pilots about the 

risk of their flights. 

Chapter 7 concludes the work and summarizes the contributions of this research. It also provides 

suggestions for future work and highlights challenges and limitations in conducting survey work 

among pilots.   
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2. FLIGHT DATA 

In commercial aviation, flight data retrieved from FDRs, or “black boxes”, is used in investigations 

of accidents and incidents and in FOQA programs. In GA, flight data can come from smaller FDRs 

(which are usually embedded in glass cockpit displays), smartphones or tablets, and ADS-B, 

among other devices. While FDRs do not make accidents more survivable, they can help preserve 

the history of a flight so that we can learn from all flights. As discussed in Chapter 1, hazardous 

states do not necessarily result in an accident. We can therefore find such hazardous states in 

successful flights and learn from them in an attempt to prevent them before they result in an 

accident.  

 

In this chapter, I discuss different types of data that are available in aviation, and in GA in particular, 

both flight data as well as operating environment data. Flight data may consist of FDR data, 

smartphone data, or ADS-B data. Operating environment data includes weather, terrain, and 

airport information. I also present some of the data processing that can provide additional 

information, making the flight data source more useful. 

 FDR Data 

Newer aircraft with glass cockpit displays usually come equipped with a Flight Data Recorder 

(FDR), which collects many parameters, depending on the aircraft and integrated flight deck 

system. Owners of older aircraft may also choose to retrofit a glass cockpit display. Among the 

GA fleet, the most common glass cockpit displays are manufactured by Garmin, Avidyne, and 

Aspen. The Garmin G1000 (Figure 4) and Avidyne Entegra (Figure 5) are integrated flight 

instrument systems, composed of two display units, the primary flight display (PFD) and the multi-

function display (MFD), and are capable of recording flight data. Such displays come at a high 

cost, sometimes exceeding the value of the aircraft. Aircraft used in GA range widely in size and 

capabilities, and they vary in age. In 2014, the average age of all registered US GA aircraft was 

36.7 years, with the average age of all piston single-engine aircraft being 44.8 years (GAMA, 

2015). The more recent advancements in cockpit technology and avionics are therefore not always 

available in GA aircraft or to GA pilots. The aircraft used in GA come with different flight data 
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collection capabilities, if any at all. The most simplistic or oldest GA aircraft do not come with 

any advanced avionics—some of them do not even have navigation or communication radios. Of 

all new piston aircraft delivered in 2006, 89% are equipped with glass cockpits (GAMA, 2006). 

However, given the aging fleet, the GA aircraft that have the ability to collect FDR data still only 

make up a small portion of the fleet. The majority of GA aircraft therefore are not equipped with 

glass cockpit displays or FDR and cannot take advantage of any safety enhancements that rely on 

such technology. 

 

 

Figure 4: The Garmin G1000 is one of the most popular flight deck systems. The Primary Flight 

Display (PFD) on the left gives the pilot attitude and control information, such as altitude, heading, 

and airspeed (NextGA Aircraft, Inc., 2012). The Multi-Function Display (MFD) on the right can 

be adjusted to the pilot’s liking, but tends to display secondary reference information, such as 

engine data, navigation charts, flight plans, and procedures (Ray, 2013).  

 

Figure 5: The Avidyne Entegra is similar in functionality to the G1000 (Figure 4) but has a 

different user interface (Mindstar Aviation, 2016).  

 



23 

Both Garmin and Avidyne make data collection convenient—a USB flash drive (for the Avidyne 

Entegra) or an SD card (for the G1000) transfer the data log from the FDRs on-board the aircraft 

to a computer. The G1000 logs flight data in a comma separated (CSV) file, with the top rows 

dedicated to airframe, Garmin hardware and software information, and headers, as shown in the 

log excerpt in Figure 6. The data follows a tabular format at a frequency of 1Hz. Avidyne records 

data in a tab delimited text document, with the aircraft information in a two-column format. 

Avidyne also includes a legend which helps the user understand the format of the rest of the 

document, which is not as user-friendly as the G1000. The Avidyne parameters are grouped in 

nine sections: eTimeInService, ePilotSettings, AhrsAndRateData, eAirData, eFlightDirectorData, 

ePriNavDetails, PriNavDisplayBlockText, eGpsPositionAndTimeData, ePistonEnginesData, and 

eTurbineEnginesData. Each row in the data set consists of a time stamp, a data section identifier, 

which tells the user what records to expect in the row, and the values for the parameters belonging 

to that particular category. The frequency of the records in Avidyne systems varies depending on 

the data group. 

 

 

Figure 6: The G1000 FDR records a plethora of information in a tabular format at a frequency of 

1Hz that we can use to characterize the safety of a flight. The number and type of parameters 

recorded depend on the interaction of the flight deck system with the aircraft.  

 

Table 20 in the Appendix shows a comprehensive list of both G1000 and Avidyne Entegra 

parameters as they appear in the respective flight data logs. Not all parameters are available for 

both systems. For example, the cylinder head temperatures, exhaust gas temperatures, and 
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communication frequency, are not provided for aircraft equipped with Avidyne Entegra systems, 

while bug settings for fundamental instruments (such as altitude and heading bugs) and angle rates, 

among others, are not available with the G1000. Additionally, parameters are expressed in 

different unit systems. For example, fuel flow is expressed in pounds per hour for Avidyne systems, 

but gallons per hour for G1000 systems. The Avidyne headers are also missing some of the unit 

specifications. 

 

Data logs may also differ for each aircraft. Aircraft differ in their capabilities and can therefore 

record more or fewer parameters. The simplest example of this is the addition of another engine, 

which would duplicate some of the parameters. In the G1000 data set, the parameters 

corresponding to each engine will be prefixed by E1, E2, etc. In the Avidyne Entegra data set, 

engines are referred to via the suffix L or R, meaning Left or Right engine.  

 Smartphone Data 

Smartphones and tablets have made their way into the cockpit, and pilots use them to check the 

weather, file flight plans, navigate, and study procedures and checklists. The same devices can be 

used concurrently to record data. Some applications, such as Foreflight and MyFlightBook, already 

include navigation data recording capabilities. Depending on the sensors available on the 

smartphone or tablet, these devices can record navigation information (GPS coordinates, altitude, 

groundspeed, ground track) and attitude information (gyroscope, accelerometer, magnetometer 

sensor data converted to attitude and heading information). 

 

The data collected on a smartphone is only a subset of the data we can collect on an FDR, which 

affects the number of hazardous states and triggers that we can detect from it. Connecting 

smartphones and tablets to other portable devices, such as portable ADS-B in or portable AHRS 

units in combination with post-processing techniques can help provide additional data or make the 

current data more accurate (Chakraborty et al., 2019). 
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 ADS-B Data 

The FAA has issued a mandate requiring all aircraft operating near Class B airspace to be equipped 

with ADS-B Out by 2020, which can provide researchers with a plethora of flight data sets. ADS-

B Out is a transponder that broadcasts aircraft parameters to ground-based towers and surrounding 

aircraft that are appropriately equipped. Unlike FDR and Smartphone data, the pilot does not need 

to provide their ADS-B data—researchers are able to collect data online or using their own 

receivers.  

 

ADS-B provides position information (GPS coordinates and altitude), ground track and heading, 

and velocity (ground speed and vertical speed). As with the smartphone data, we can only detect 

a subset of the hazardous states and triggers using ADS-B data.  

 

Even though smartphone and ADS-B data is available on more aircraft than FDR data, it is not as 

complete and does not provide as much information as the FDR record would. As a result, it is not 

possible to use the smartphone or ADS-B data to detect all the possible states and triggers; the 

states that may appear in a smartphone or ADS-B dataset are rather a subset of the states that would 

appear in an FDR dataset of the same flight. The lack of information on some states may result in 

pilots assuming that they do not exist, suggesting that a given flight may look safer than it actually 

is.  

 Operating Environment Information 

Other data sources make it possible to expand the flight data by adding information such as 

weather. FDR data includes navigation information, but no information on the surrounding area. 

For example, FDR data does not include the name or identifier of the departure or arrival airport 

for a flight, or the clearance from a given obstacle. We can expand the set of hazardous states that 

are detectable in FDR data during post-processing to add more fields. The Airports and Runways 

databases provide the coordinates of each airport in the US, coordinates for the start and end of 

each runway, as well as information on runway lengths, widths, elevation, type (asphalt, turf, etc.), 

and condition, among other parameters. The FAA maintains a Digital Obstacles File—a database 

of all known obstructions within the U.S. that includes coordinates, height above the ground and 
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above sea level, and structure information. FDR datasets include wind information at each 

timestamp—smartphones and ADS-B are not able to provide that information. Glass cockpit 

displays provide true airspeed and heading through the aircraft sensors, and groundspeed and 

ground track from the GPS, and then calculate wind direction and velocity from the information 

they have available. Smartphones, tablets, and ADS-B do not have access to the aircraft sensors 

and therefore cannot provide true airspeed. However, if we know the winds aloft at a particular 

location, we can calculate true airspeed using trigonometry. 

 FDR Data Post-Processing 

Figure 7 shows a sequence of algorithms that post-process FDR data before it can go through flight 

analysis to detect any hazardous states and evaluate its risk in an automated progression.  

 

 

Figure 7: Independently from the source of raw data, all flight data has to go through a sequence 

of automated post-processing algorithms which output risk information to go into the pilot’s 

debrief.  

 

The first step is to unify the data format—even for data that comes from the same display, (e.g., 

Garmin G1000) the fields as well as their order depend on the aircraft on which the data was 

recorded as well as the hardware and software version on the display. Creating a unified data 

format is necessary to automate the algorithms that follow.  

 

Next, I add a field to the flight data that identifies the phase of flight that the aircraft was operating 

under at each timestamp (Goblet et al., 2015). The phase of flight identification is important for 

two reasons. First, it facilitates the addition of airport and runway information for departure and 
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arrival airports in each flight, as well as any airports visited while en route. Second, some 

hazardous states and triggers are relevant for particular phases of flight—deviation from the 

runway centerline is specific to the takeoff and landing phases of flight, whereas a low airspeed 

state is applicable for all phases of flight.  

Table 1: The second step in data processing is to append each timestamp in the flight data with a 

phase of flight code, as described here (Goblet et al., 2015). There are nine unique codes 

corresponding to nine phases of flight that may appear in a flight.  

Phase of Flight 
Phase of 

Flight Code 
Definition 

Standing 2 
Any time before taxi or after arrival while the aircraft is 

stationary.  

Taxi 3 
The aircraft is moving on the ground prior to takeoff and 

after landing. 

Takeoff 4 
From the application of takeoff power, through rotation 

and to an altitude of 35 feet above runway elevation. 

Climb 5 
Any time the aircraft has a positive rate of climb for an 

extended period of time. 

Cruise 6 
The time period following the initial climb during which 

the aircraft is in level flight. 

Descent 7 
Any time before approach during which the aircraft has a 

negative rate of climb for an extended period of time. 

Approach 8 
From the point of pattern entry, or 1000 feet above the 

runway elevation, to the beginning of the landing flare. 

Landing/Touchdown 9 

From the beginning of the landing flare until the aircraft 

touches down and exits the landing runway, or comes to 

a stop on the runway, or when power is applied for 

takeoff, depending upon the intended action after 

landing. 

Go-around 10 

A Go-around is a situation where the pilot is about to 

make a touchdown but decides to apply full power before 

the landing gear touches the ground. 

 

Once I identify the phases of flight in each flight, I can parse the takeoffs and landings and detect 

the airports at which they occurred. I use the coordinates of a takeoff or landing point and designate 

a small bounding box around it. I then compare the dataset of airports and runways against the 

bounding box to see which runways the aircraft could possibly have used. Usually, only one 

runway happens to fall within the bounding box. Depending on the airport layout, however, if the 

starting points of two runways are located very close to each other, the algorithm may identify two 

possible runways. I compare the aircraft heading to the runway orientation to either confirm the 
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choice of runway or choose the correct runway from the set of possible runways. In the case of an 

intersection departure, the algorithm may detect the wrong runway, as is the case with aircraft 

taking off from the intersection of Runway 27L and Taxiway D at KOSU, where (now closed) 

Runway 32 also happens to begin, as shown in Figure 8. To correct this misidentification, the 

algorithm increases the tolerance on the bounding box until it finds a runway that corresponds to 

the appropriate heading. Figure 8 indicates the takeoff point in an orange dot and the beginning of 

each runway in a blue dot. The smaller bounding box that is centered on the takeoff point has to 

increase in tolerance until it includes a blue dot (the bigger bounding box). Once it identifies one 

correct departure or arrival runway, the algorithm saves information such as the runway length and 

width, runway heading, runway condition, and the airport identifier. 

 

The output of the automated algorithm progression shown in Figure 7 is an amended dataset for 

each flight that was processed, which includes the flight data information with fields in a specific 

order and with unique identifiers, the phase of flight information at each timestep, and information 

on the airport and runway used for each takeoff and each landing in the flight. 
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Figure 8: The Ohio State University airport’s layout (FAA, 2015) creates complications in the part 

of the algorithm that determines from which airport and runway the aircraft took off. If the aircraft 

takes off from the Runway 27L and Taxiway D intersection, the algorithm outputs Runway 32 as 

the takeoff runway. Additional checks therefore help confirm the runway selection.  
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3. DEFINING HAZARDOUS STATES AND TRIGGERS 

Using flight data to proactively improve GA safety requires that we are able to (1) identify events 

that may put the safe outcome of a flight at risk, and (2) detect those events in the flight data and 

inform the pilot in a way that helps them improve in their future flights. There are different ways 

to retrieve useful information from flight data. Detecting exceedances in the data, for example, 

consists of applying limits (upper or lower) on different parameters in the flight data. Safety events 

are off-nominal operations, or deviations from normal flying conditions, that could lead to 

accidents (Fala & Marais, 2016). Where exceedances only consider independent parameters, safety 

events combine parameters to detect various off-nominal events. For example, a bank angle of 40° 

is not an exceedance, and an airspeed of 70 knots is not an exceedance, but a bank angle of 40° 

while at an airspeed of 70 knots is a safety event (Fala & Marais, 2016). Safety events can therefore 

provide more safety information from flight data than exceedances, however, they still only 

provide information on what happened. 

 

Anomaly detection can be used to support airline FOQA programs in the airlines by identifying 

anomalous flights without pre-defining parameter thresholds (Li et al., 2011). Cluster analysis 

algorithms are used to find patterns in datasets and detect when a particular flight differs from 

what has already been observed. A system that provides safety analysts with a list of flights that 

were tagged as anomalous together with the reasons that they were deemed anomalous can help 

safety experts discover human factors issues in aviation (Budalakoti et al., 2006). The variability 

and diversity in GA flights makes such a task more difficult; it is not always possible to have a 

“normal flight” pattern from which anomalous flights can differ. Anomaly detection can be useful 

on parts of the flight, such as the approach segment, or the pattern around different runways, where 

the timeseries can be normalized. As opposed to airline operations, which have pre-defined routes 

that aircraft follow, GA pilots operate at more airports, making routes more diverse and less 

populated. Under Visual Flight Rules (VFR) operations, in particular, GA pilots can choose their 

own form of navigation, meaning that they won’t always fly in a straight line directly from airport 

to airport. They may choose to alter their flight plan to avoid terrain or other traffic, or to find a 

more scenic route. Lastly, anomaly detection in GA can identify flights that look different, which 

may not have a correlation with flights actually being unsafe. 
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 State-Based Flight Representation 

I model each accident or incident using a state-based representation. Each flight consists of states 

(nominal or hazardous), and trigger events. A state is a period of time during which the system, 

consisting of the aircraft and the pilot, exhibits a particular behavior, and a trigger is an event that 

causes the system to transition between two states (Rao, 2016). 

 

Not all flights that involve hazardous states will result in accidents—in fact, most of them will not. 

Figure 9 represents the state-based model of one such flight that transitioned to a hazardous state 

and back to a nominal state through a remedial action. A high pitch attitude can result in a flight 

in the slow airspeed state, which if not corrected, can result in an aerodynamic stall. If corrected, 

via a remedial action trigger, such as decreased pitch attitude, the flight can return to a nominal 

state.  

 

Figure 9: In this flight, the state-based flight model shows that the slow airspeed state was triggered 

by a high pitch attitude, however a remedial action returned the aircraft to the nominal flight state, 

ending with a safe landing. 

 

In the flight modeled in Figure 10, the pilot does not take remedial action, and therefore transitions 

to a stall state. Inadequate recovery from the stall can result in a collision with terrain accident. 

Most flights do not result in accidents. They are either nominal flights, which do not enter any 

hazardous states, or flights that enter hazardous states but successfully recover and land safely. 

Hazardous states that may result in accidents also show up in flights that recovered back to the 

nominal state. 
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Figure 10: In another flight, the state-based flight model shows how the same slow airspeed state 

eventually transitioned to an accident through lack of remedial action and recovery. 

 

Since accidents tend to be the result of hazardous states from which the flight never recovered, an 

analysis of historical accident data can help populate a list of states and triggers definitions. We 

can use historical accident data, as coded by the NTSB, to translate accident causes and factors 

into hazardous states and triggers. Another way to define additional hazardous states and triggers 

necessary to model flights is by using the pilot’s operating handbook as well as any manufacturer 

recommendations. For example, manufacturers require pilots to maintain an airspeed under a 

maximum airspeed threshold for each aircraft, to avoid aerodynamic flutter. Fast airspeed is 

therefore a candidate for a hazardous state. Our flight physics knowledge can also contribute to 

our collection of states and triggers. Exceeding the critical angle of attack is a trigger event that 

can result in an aerodynamic stall state. Lastly, we can implement surveys to obtain additional 

events that can contribute to the list of states and triggers. These surveys can ask flight instructors 

and experienced pilots who are active in the GA community for states and triggers that they think 

may result in accidents.  

 

Using historical accident data as a starting point for generating a list of hazardous states and 

triggers ensures that the considered events have the potential of being a factor in an accident, since 

they have already appeared in an accident. However, other sources of hazardous state definitions 

should not be discounted, as they allow us to detect situations that could potentially be problematic, 

even if they have not caused an issue yet. 

 Potential Hazardous States During Takeoff 

In this research, I use the takeoff phase of flight to investigate the effect of representation on post-

flight debrief. The takeoff phase of flight provides a good demonstration of the research because 
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it includes a wide variety of hazardous states that capture decision making, aircraft control, and 

performance. To generate a list of hazardous states and triggers that are of importance during the 

takeoff phase, I used the FAA Airman Certification Standards (ACS) in combination with the 

NTSB accident database. Several pilot actions contribute to a successful takeoff, including 

maintaining aircraft control while on the ground and above the runway, choosing the required 

engine settings, lifting off at the appropriate airspeed (rotation speed), and not veering off the 

runway. FAA Designated Pilot Examiners (DPE) use the ACS to evaluate student pilots (FAA, 

2017). The certification standards for normal takeoffs are shown in Figure 11. To obtain the 

hazardous states and triggers applicable to the takeoff phase, I mapped the standards from the ACS 

to the initial list of hazardous states and triggers from the historical accident data. For example, 

Confirm takeoff power and proper engine and flight instrument indications prior to rotation, is 

mapped to the Insufficient takeoff power state. Table 2 lists the hazardous states and triggers that 

may be present during the takeoff phase and maps them to the corresponding standards from Figure 

11. 
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Figure 11: Airman Certification Standards are designed to create consistent evaluation standards 

for pilots and examiners alike. The standards for normal takeoffs for a private pilot outline the risk 

management and flying skills that a private pilot candidate should be able to demonstrate when 

applying for their certificate (FAA, 2017).  
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Table 2: I identified a list of hazardous states and triggers from a subset of the NTSB database of 

accidents that occurred during the takeoff phase of flight. All of these states are already covered 

in the ACS. 

Hazardous State or Trigger ACS Mapping 

Insufficient takeoff distance remaining PA.IV.A.K1; PA.IV.A.R13 

Insufficient takeoff power PA.IV.A.K2; PA.IV.A.S7 

Tailwind takeoff PA.IV.A.K4; PA.IV.A.R4 

Takeoff in high crosswind PA.IV.A.K4; PA.IV.A.R2; PA.IV.A.S4 

Deviation from centerline PA.IV.A.S6; PA.IV.A.S12 

Inappropriate runway selection PA.IV.A.R1; PA.IV.A.S2 

Inadequate airspeed at rotation  PA.IV.A.S8 

High airspeed at rotation PA.IV.A.S8 

Takeoff from inappropriately short runway PA.IV.A.K.1; PA.IV.A.R.1; PA.IV.A.R.13 

 Characterizing Hazardous States via Measurable Parameters 

Table 2 lists the hazardous states and triggers that may appear during takeoff. Each event described 

in Table 2 can become a hazardous state or trigger if the associated parameters that characterize it 

exceed a threshold. For example, not being on the centerline becomes dangerous when the 

deviation is significant enough to cause a runway excursion or a collision with objects on the 

runway environment, such as runway lights. There are different ways of determining what the 

thresholds for these events should be. 

 

The hazardous states in Table 2 can be identified either using flight data on its own, or in 

combination with other data. As discussed in Chapter 2, different sources of data have varying 

capabilities and may not be able to provide enough information for the complete set of hazardous 

states. Table 3 therefore shows the data required for each state, grouped according to how the 

parameters that characterize the state are calculated, assuming that the FDR data is available. 

Simple parameters are those that are extracted directly from raw flight data. For example, slow 

airspeed is a hazardous state that is characterized by a simple parameter, since airspeed is one of 

the parameters that is recorded by the FDR. Derived parameters are those that combine multiple 

simple parameters to make a new parameter. Pressure altitude is an example of a derived parameter, 
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because it is based on three simple parameters: true altitude, reference pressure, and outside air 

temperature. Multi-Source Parameters may depend on weather data sources, airport information, 

or obstacle databases. For example, proximity to obstacle cannot be detected from flight data alone, 

but I can detect it by accompanying the flight data with an obstacle database, such as the FAA’s 

Digital Obstacle File (DOF). The classification of each state may change depending on the type of 

flight data that is available. For example, the wind direction and velocity parameters are considered 

simple parameters when analyzing a Garmin G1000 dataset, but they could be derived parameters 

in a different kind of FDR, or even multi-source parameters when using smartphone data in 

combination with historical weather information to calculate them. 

Table 3: The hazardous states and triggers during takeoff can be grouped in three parameter types 

(simple, derived, and multi-source parameters) based on how I calculate them. 

Parameter group State/Trigger Additional data required 

Simple parameter 

Insufficient takeoff power N/A 

Inadequate airspeed at rotation N/A 

High airspeed at rotation N/A 

Derived parameter 
Tailwind takeoff N/A 

Takeoff in high crosswind N/A 

Multi-source 

parameter 

Insufficient takeoff distance remaining Airport/Runway database 

Deviation from centerline Airport/Runway database 

 

Each parameter that can be identified from data falls on a risk spectrum: sometimes a takeoff may 

occur in crosswinds that are slightly high (1 kt higher than recommended, for example), or in 

crosswinds that are much higher than recommended. Specifying how unsafe an event is, as 

opposed to just saying that it is unsafe, may help pilots understand the severity of their actions and 

therefore change them.  

 

The tables in the following pages describe the hazardous states listed in Table 4, discuss their 

possible outcomes, and explain the process of calculating the relevant parameters so that I detect 

them in flight data. Note that all processes described assume that I am starting with a processed 

dataset as described in Section 26. The table for each state comes in two parts: state definition and 

state detection. State definition describes the motivation behind communicating the state to pilots 



37 

by describing an accident where it appeared as a factor. State detection then discusses how to 

calculate parameters that can describe the state using different sources of data. Also note that the 

risk thresholds towards the end of the state detection tables are there for demonstrative purposes 

in this research—in flight, they can be highly dependent upon the pilot’s flight training and 

experience and the aircraft capabilities. For example, the Deviation from the centerline state has 

risk level thresholds that are calculated based on the wingspan of a Cessna 172 and would not 

necessarily apply for other types of aircraft. 

Table 4: The states presented here are adapted from Table 2 to exclude those that we cannot 

calculate from the flight data that is available right now. Each state has an associated table that 

describes how it is defined and calculated in more detail.  

State Pages Notes 

Insufficient takeoff power 42  

Inadequate/High airspeed at rotation 43  

Tailwind takeoff 44-45 These two states will be presented in 

unison in Chapters 3, 4, and 5. Takeoff in high crosswind 46-47 

Insufficient runway distance 

remaining at takeoff 
48-49 

This parameter aims to address the Takeoff 

from inappropriately short runway state 

and the PA.IV.A.K.1 and PA.IV.A.R.13 

ACS standards. 

Deviation from centerline 50-51  
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State Definition: Insufficient takeoff power 

Severity 

Taking off with insufficient power limits the lift generated, resulting in an aircraft 

that may be unable to climb fast enough to clear obstacles. Insufficient power may 

be the result of mechanical issues, or the pilot having incorrect throttle/power 

settings. In carbureted engines, applying carburetor heat will also decrease 

performance.  

Accident 

Example 

(SEA88LA191) 

A flight in a Piper PA-28 resulted in an accident in Troutdale, OR, in 1988, after the 

pilot took off with insufficient power. The aircraft, unable to adequately climb, 

ended up in trees in a raspberry field, resulting in four injuries. The investigation 

revealed that the partial loss of engine power was a result of a mechanical failure in 

the exhaust carburetor system. 

Accident State-

Based Model 

 

State Detection: Insufficient takeoff power 

Parameter Engine RPM 

Type Simple parameter 

Data required • Engine RPM 

Risk levels 

Risk level 1: Engine RPM < 2300 

Risk level 2: Engine RPM < 2250 

Risk level 3: Engine RPM < 2200 
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State Definition: Inadequate/High airspeed at rotation 

Severity 

Inadequate airspeed at rotation may result in the aircraft getting out of ground 

effect prematurely and coming back down to the runway instead of climbing. 

Waiting until airspeed is too high to rotate can result in a late takeoff, with a 

decreased margin of safety, and an increased difficulty to maintain directional 

control. Increased airspeed also increases the amount of runway required to abort 

takeoff if needed. 

Accident 

Example 

(WPR14LA250) 

During the takeoff roll for a local flight in Alturas, CA, a Cessna 172RG became 

airborne momentarily without reaching rotation speed, and came back down to the 

runway. The pilot noticed that the takeoff roll was taking longer than usual, and 

decided to abort takeoff since the runway remaining was not enough to continue. 

The pilot reduced power, and both the pilot and the passenger applied the brakes, 

intentionally veering off the right side of the runway. The aircraft collided with a 

ditch and fence and nosed over. The NTSB attributed the accident to the aircraft’s 

inability to attain rotation speed. The pilot’s delayed decision to abort the takeoff 

also contributed to the accident.  

Accident State-

Based Model 

 

State Detection: Inadequate/High airspeed at rotation 

Parameter Airspeed 

Type Simple parameter 

Data required • Indicated Airspeed 

Risk levels 

Risk level 1: < 54 or > 56 

Risk level 2: < 50 or > 60 

Risk level 3: < 46 or > 64 
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State Definition: Tailwind takeoff 

Severity 

Taking off with a tailwind results in an increased groundspeed, which increases 

takeoff distance, and leads to inadequate runway remaining at rotation. The 

increased groundspeed and delayed rotation may result in the aircraft being unable 

to climb at a speed that ensures obstacle clearance. 

Accident 

Example 

(CEN14LA406) 

A Cessna Cardinal (177RG) collided with a tree line after an accidental tailwind 

takeoff in Manistee, MI, in 2014, resulting in four minor injuries. The flight 

instructor on board the aircraft reported that the weather station was inoperative 

during the preflight check, and used the airport’s windsock to select the appropriate 

runway for takeoff, which indicated a light and variable wind, primarily from the 

east. They decided to use runway 19, as their intended destination was towards that 

direction. They also used the short-field takeoff procedure for the takeoff, and took 

off with approximately 1,000 ft of runway remaining. However, during the initial 

climb, the airplane lost airspeed and began to sink back towards the ground, 

touching down at the runway departure threshold and continuing into the tree line. 

After the accident, the flight instructor noted that the airport’s windsock indicated 

a north-northwest wind direction with wind gusts of 18-20 knots, resulting in a 

tailwind condition. The corresponding decrease in airspeed and the reduced climb 

gradient resulted in the aircraft being unable to continue the takeoff.  

Accident State-

Based Model 
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State Detection: Tailwind takeoff 

Parameter Tailwind at takeoff 

Type Derived parameter 

Data required 

• Takeoff time 

• Wind velocity 

• Wind direction  

• Aircraft heading 

Calculation 

1. Identify the takeoff point in flight data 

2. Find the corresponding wind direction and wind speed. 

3. Calculate the tailwind component. 

𝑇𝑎𝑖𝑙𝑤𝑖𝑛𝑑 = 𝑤 cos 𝜃 

 

Risk levels 

Risk level 1: Tailwind component > 0 

Risk level 2: Tailwind component > 3 

Risk level 3: Tailwind component > 5 
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State Definition: Takeoff in high crosswind 

Severity 

Crosswind during landing and takeoff can require a lot of drift correction in low 

airspeed conditions, where the control surfaces are less effective. Different 

airplanes (and different pilots) have different capabilities to counteract the 

crosswind drift.   

Accident 

Example 

(GAA16CA227) 

When the pilot of an American Champion Scout, a tailwheel aircraft, attempted to 

take off in 18 knots of crosswind at Plainview, TX, the right wing dropped shortly 

after takeoff, followed by a drop in the left wing, which impacted the ground. The 

wind gusts exceeded the aircraft’s crosswind correction capabilities, resulting in the 

loss of directional control.  

Accident State-

Based Model 
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State Detection: Takeoff in high crosswind 

Parameter Crosswind at takeoff 

Type Derived parameter 

Data required 

• Takeoff time 

• Wind velocity 

• Wind direction  

• Aircraft heading 

Calculation 

1. Identify the takeoff point in flight data 

2. Find the corresponding wind direction and wind speed. 

3. Calculate the crosswind component. 

𝐶𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑 = 𝑤 sin 𝜃 

 

Risk levels 

Risk level 1: Crosswind component > 10 kts 

Risk level 2: Crosswind component > 15 kts 

Risk level 3: Crosswind component > 18 kts 
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State Definition: Insufficient runway distance remaining at takeoff 

Severity 

Taking off with insufficient runway remaining may lead to multiple problems:  

• If there are obstacles at the end of the runway, and the pilot uses up the entire 

runway to take off, the aircraft may not have enough time/distance to climb at 

an altitude that clears the obstacles at the end of the runway. 

• After a takeoff late down the runway, the pilot is left with less options should 

any mechanical problems occur. For example, if an aircraft takes off at the 

beginning of a runway, and the engine fails shortly after takeoff, the pilot could 

potentially land straight ahead on the remainder of the runway. However, if 

the aircraft takes off towards the end of the runway, the only option is to now 

find somewhere to land ahead of the runway, while also not having a lot of 

altitude to lose.  

Accident 

Example 

(ERA12LA314) 

In 2012, a student pilot flying a Piper Warrior, decided to do an intersection 

departure at Lake Wales Municipal Airport, knowing that he only needed 800 ft of 

runway to take off. He applied full power and let the aircraft accelerate to a rotation 

speed of 63 knots before pulling on the control yoke to rotate. Seeing that the 

airplane was not rotating, the student decided to abort the takeoff. The CFI 

observing the student reported that the airplane became airborne for a few seconds 

only 3-4 ft above the runway. Unable to bring the airplane to a stop on the runway, 

the student pilot veered to the right and collided with bushes in a runway excursion. 

At the intersection, the student pilot had 1,000 ft of runway available.  

Accident State-

Based Model 
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State Detection: Insufficient runway distance remaining at takeoff 

Parameter Runway distance remaining 

Type 

Multi-source parameter 

• Flight data (FDR, Smartphone, or ADSB) 

• National Transportation Atlas’ Airport Runway Database (RITA, 2016) 

Data required 

From flight data: 

• GPS Coordinates at takeoff point 

From runway database: 

• GPS coordinates at the runway threshold on both ends of the runway 

• Runway length 

Calculation 

1. Identify the takeoff point in flight data 

2. Detect the airport and runway from which the aircraft took off by finding 

airports/runways that fall in a boundary box around the takeoff point 

3. Use GPS coordinates to calculate the distance between the takeoff point and the 

runway threshold 

4. Use the coordinates of the threshold of the runway at the two ends to find the 

centerline 

5. Project the distance from the threshold onto the centerline and correct for the 

Earth’s curvature (dx) 

6. Subtract the projected distance from the total runway length to obtain the 

Runway distance remaining 

 

Risk levels 

Risk level 1: Runway distance remaining < 2000 ft 

Risk level 2: Runway distance remaining < 1500 ft 

Risk level 3: Runway distance remaining < 1000 ft 
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State Definition: Deviation from centerline 

Severity 

Deviation from the runway is usually the result of insufficient rudder control while 

accelerating. As the pilot advances the throttle to full power, the left-turning 

tendencies of a single-engine airplane increase, requiring right rudder application 

to counteract them. Maintaining directional control on the runway is important 

both during the takeoff and landing phases.  

Accident 

Example 

(GAA16CA284) 

A pilot flying a Citabria, a tailwheel airplane, in Ferndale, MT, in 2016, drifted left of 

the runway centerline during his takeoff roll. He attempted to correct by applying 

right rudder, which resulted in the airplane slowing down, suggesting that the pilot 

was touching the brakes. The pilot released the right rudder to adjust his foot so 

that it would not touch the brake, and noticed that the airplane was quickly 

approaching the left edge of the runway. He decided to rotate early, but the airplane 

continued deviating towards the left, and ended up colliding with a hangar and 

catching fire. The NTSB reported that the cause of the accident was “the pilot's loss 

of directional control during takeoff, resulting in a decision to rotate early, and a 

collision with a hangar and subsequent fire.” 

Accident State-

Based Model 

 

  



47 

State Detection: Deviation from centerline 

Parameter Distance from centerline/Distance from runway edge 

Type 

Multi-source parameter 

• Flight data (FDR, Smartphone, or ADSB) 

• National Transportation Atlas’ Airport Runway Database (RITA, 2016) 

Data required 

From flight data: 

• GPS Coordinates at takeoff point 

From runway database: 

• GPS coordinates at the runway threshold on both ends of the runway 

• Runway width 

Calculation 

1. Identify the takeoff point in flight data 

2. Detect the airport and runway from which the aircraft took off by finding 

airports/runways that fall in a boundary box around the takeoff point 

3. Use GPS coordinates to calculate the distance between the takeoff point and the 

runway threshold 

4. Use the coordinates of the threshold of the runway at the two ends to find the 

centerline 

5. Project the distance from the threshold onto a line perpendicular to the 

centerline and correct for the Earth’s curvature (dy) to obtain the Distance 

from centerline 

6. Subtract the projected distance from the runway width to obtain the Distance 

from runway edge 

 

Risk levels 

(Cessna 172) 

Risk level 1: Centerline Deviation >  0.75 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18)   

Risk level 2: Centerline Deviation >  0.5 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18) 

Risk level 3: Centerline Deviation >  0.25 (
𝑅𝑢𝑛𝑤𝑎𝑦 𝑊𝑖𝑑𝑡ℎ

2
− 18) 
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4. PRESENTING PILOTS WITH SAFETY-DRIVEN FEEDBACK 

The third part of the research, as shown in Figure 3, deals with communicating hazardous states 

and triggers to pilots. Pilots are subject to cognitive biases that may affect their perception of risk 

and their behavior. This Chapter reviews the literature on decision making in aviation and how 

cognitive biases may impact post-flight debrief. I then introduce three factors which I investigate 

in this work in terms of their impact on feedback effectiveness.  

 Aeronautical Decision Making (ADM) 

Approximately 75% of GA accidents involve some kind of pilot error, suggesting that the pilot 

could have done something to avoid or stop the accident (AOPA Air Safety Institute, 2018). 

Aeronautical Decision Making (ADM) provides pilots with a structured and systematic approach 

to analyzing in-flight changes (FAA, 1991). ADM is defined as the ability to search for and 

establish the relevance of all available information regarding a flying situation, to specify 

alternative courses of action, and to determine the potential outcomes from each alternative course 

of action (Jensen et al., 1987). Jensen (1995) defines pilot judgment as “the mental process that 

we use in making decisions.” The terms judgment, decision making, and aeronautical decision 

making are used interchangeably in aviation human factors research (Hunter, 2003). Decision 

making is one of the most important factors in human performance in aviation (O'Hare, 2003) and 

decisional errors are one of the major causal factors of fatal accidents (Jensen & Benel, 1977; 

Shappell & Wiegmann, 1997). 
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Figure 12: O'Hare (2003) identified six components of decision making in his ARTFUL decision 

making model. The central process of risk assessment links situational awareness and planning. 

The risk associated with the current goal at the top is continually assessed until the risk becomes 

unacceptable, at which time the decision maker can come up with a new goal if time permits.  

 

Jensen and O’Hare have both studied and modeled aeronautical decision making and pilot 

judgement. O’Hare’s ARTFUL decision-making model suggests that a current goal will only be 

altered if the pilot’s situational awareness indicates a need for change, and there is time to generate 

a new goal, as shown in Figure 12 (O'Hare, 1992; O'Hare, 2003). Jensen’s Pilot Judgement Model 

is broken in two parts: rational judgment and motivational judgment (Jensen, 1995). Rational 

judgment is “the ability to discover and establish the relevance of all available information relating 

to problems of flight, to diagnose these problems, to specify alternative courses of action and to 

assess the risk associated with each alternative”, and motivational judgment is “the motivation to 

choose and execute a suitable course of action within the available time frame” (Jensen, 1995). 

Both O’Hare and Jensen have indicated that to help pilots improve their decision making, judgment, 

and flying habits, pilots should know and understand what they need to change, and why they 

should change it. For example, if the pilot is high on the approach to a runway, they first need to 

realize that their approach is not good enough and identify what specifically is going wrong. They 
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should then come up with a way to fix it, such as decreasing power, or pitching down more, 

depending on the flight variables, and then follow through with the plan to correct the approach. 

If they are too close to the runway, the approach may not be salvageable, in which case the “new 

goal” could be a go-around.  

 

To facilitate goal setting and decision making in aviation, flight instructors debrief the flight lesson 

after the flight, as discussed in next section.  

 Flight Debrief 

During flight training, flight instructors use feedback, either during flight, or in a post-flight debrief, 

to communicate ways to improve performance or correct mistakes to their students. However, after 

a successful checkride, the now-licensed pilot no longer has an instructor or examiner by their side 

to talk to about their flight performance or safety, and they may not be aware (or want to 

acknowledge) that their actions during the flight could have resulted in an accident or incident. 

After they complete their initial training, some GA pilots continue their training towards more 

advanced certificates, while others continue flying recreationally, receiving only the minimum 

mandated training once every two years, which means they do not have easy access to organized 

feedback on their performance.  

 

Commercial products that take advantage of the addition of technology in the flight decks of small 

aircraft to collect flight data and present pilots with a visualization of their flights, like CloudAhoy 

and CirrusReports, are becoming more prevalent in debrief. Such products can integrate flight data 

with other aviation resources, such as a sectional chart or instrument approach procedure plate, to 

display information that helps the pilot visualize their flight after they land. This type of analysis 

is non-evaluative, in that it only displays an objective replay of the flight in different settings, with 

no commentary on flight performance. For example, Figure 13 and Figure 14 show screenshots of 

the debrief page of a flight, as recorded using a smartphone. Figure 13 gives the pilot an overview 

of the flight, and the pilot can then choose what specific part of the flight they want to debrief in 

Figure 14 (for example, the takeoff segment).  
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Figure 13: The Debrief screen on CloudAhoy presents pilots with an overview of their flight and 

allows them to choose how they want to view their flight in various windows. 

 

In Figure 14, the pilot can see the ground track and ground speed profile of their takeoff. However, 

there is no indication of the quality or safety of the takeoff. While products like CloudAhoy can 

be helpful in reviewing flights, both during and after formal training, they do not and are not meant 

to provide safety guidance. A good debrief, however, “allows individuals to discuss individual and 

team-level performance, identify errors made, and develop a plan to improve their next 

performance” (Salas et al., 2008, pp. 518-527), so, by eliminating the debrief aspect of flying, we 

are removing the continuous learning from the flight experience. 
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Figure 14: The CloudAhoy debrief algorithm separates the flight into segments so that the pilot 

can look at different flight portions individually, and tailors the information on the screens to that 

particular segment of flight. 

 

Various efforts are now underway to provide safety guidance. For example, MITRE’s GA 

Recording Device (GAARD) app records flight data from smartphone or tablet sensors to create a 

database of GA flight data (MITRE, 2014). The National General Aviation Flight Information 

Database (NGAFID) then allows the user to upload data, either from a Garmin G1000 FDR, or 

from the GAARD app, from a Cessna 172S or Cessna 182 airplane, and identify potential safety 

risks (NGAFID, 2017). While such products, services, and initiatives are in place to help pilots 

improve their flying, pilots who exhibit the anti-authority or invulnerability hazardous attitudes 

may dismiss them, or choose to justify their actions (FAA, 2016). For example, a pilot may dismiss 

feedback after observing that taking a particular unsafe action, such as taking off at a high airspeed, 

or cruising with a richer mixture than recommended, has not resulted in an accident or incident in 

their case. A researcher or regulator’s attempt to correct such behaviors in pilots that exhibit 

hazardous attitudes might therefore appear alarmist to such pilots. However, as discussed in 
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Chapter 3, hazardous states appear in flights that did not necessarily result in accidents, and a close 

escape on a particular occasion does not guarantee that such escapes are always possible. 

 

To manage risk, pilots need to perceive the risk associated with a situation or hazard, and decide 

whether they are willing to accept this amount of risk in this situation (Hunter, 2002). Safety-

driven post-flight feedback may help facilitate risk management in subsequent flights, by alerting 

pilots to potentially hazardous situations.  

 

However, there has not been enough research on effective ways to debrief flights, or on how to 

communicate risk information to pilots. O’Hare’s (2003) work points out that "the effects of the 

Tversky and Kahneman (1974) work on decision heuristics and biases have been highly significant 

in a number of fields. Surprisingly, this has not been the case in research on aeronautical decision 

making." It is still not clear how pilots respond to debrief or how different formats within the 

debrief affect pilot response in terms of risk. In Section 4.3 I discuss cognitive biases from different 

fields that may be significant in aviation. 

 Biases in Risk Communication 

Researchers in the fields of medicine, education, and sports, have studied biases to which humans 

are susceptible when given feedback. Physicians use different risk communication methods in 

attempts to convince their patients to change specific behaviors that could be hazardous to their 

health. Research in medicine aims to evaluate different formats of conveying health risks to 

patients. The intent of health risk messages is to increase perceived risk and motivate behavior 

change (Lipkus, 2007), similarly to how communicating risk to pilots aims to increase their 

understanding of risk and motivation to fly more safely. Coaches and teachers provide students 

with feedback so that they can improve their performance, while being careful not to hinder their 

progress.  

 

The language used in feedback messages may lead the recipient of the message towards particular 

conclusions and bias their understanding (National Research Council, 1989). Phrases that are 

different, but logically equivalent, can cause individuals to change their preferences. For example, 

a study of how patients consent to medical procedures by Gurm and Litaker (2000) showed that 



54 

framing the risk involved in a medical procedure impacted the patient’s likelihood to consent to 

the procedure. Regression toward the mean, the phenomenon describing that variables that are 

extreme on a first measurement tend to be closer to the average on the second measurement, may 

also play a role in how pilots perceive the feedback. Pilots who do well on a task are likely to do 

more poorly on a second attempt of the same task, regardless of whether the feedback they receive 

is positive or negative (Kahneman & Tversky, 1973). Flight instructors are conditioned to think 

that they are punished for rewarding their students and rewarded for punishing them, when they 

do not apply regression to the mean in their reasoning. The second attempt at a flight maneuver 

after making a severe mistake will likely be closer to the mean.  

 

Medical researchers have evaluated how numeric, verbal, and visual communication formats affect 

how likely patients are to change their behaviors. Numeric formats report the numbers of people 

affected by a behavior, or the probability of an event, verbal formats describe how the person 

involved is affected by a behavior, and visual formats present the numbers in graphs and diagrams. 

While the intent of each message is to communicate risk accurately and motivate behavior change, 

different communication formats may affect how pilots respond to feedback. 

 

Providing feedback recipients with a lot of information may result in information overload 

(National Research Council, 1989). As a result, people tend to desire simplicity and therefore 

prefer feedback to be categorized into distinct and polar groups, rather than following a continuous 

scale. This categorization fosters a demand for convincing proof in feedback, suggesting that 

telling people that something is unsafe is not sufficient. Feedback effectiveness also depends on 

how it treats uncertainty and whether it bases decisions on sound science or a “better safe than 

sorry” attitude. 

 

Numbers are often used in conjunction with statistical metrics to describe risk. Numeric formats 

appeal to people because they convey precision and accuracy. Numbers also tend to be perceived 

as more scientifically credible and can be verified for accuracy. People with low numeracy can 

have trouble understanding numerical metrics (Lipkus, 2007). 
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Probabilistic information can be presented in different formats: probabilities, odds, percentages, 

and natural frequencies. Lipkus highlighted recommendations for using numeric formats. People 

need a reference point that facilitates their understanding of risk. The reference point, according 

to Lipkus, can come in two forms: the risk of the flight resulting in an accident had the detected 

hazardous state or trigger not been present in the flight, and a comparison to the likelihood of a 

different event happening (such as the likelihood of being in a car accident). Numeric formats 

should be consistent: percentages should be compared to percentages, and odds to odds, and the 

denominator in each case should be the same (Lipkus, 2007). While comparing 5 out of 25 and 10 

out of 100 may be easy for some users, other users who put emphasis on the denominator may 

perceive the risk differently (Paling, 2003). Small numbers approaching zero may be regarded as 

insignificant, and rounded numbers are more readily understood. 

 Pilot Risk Perception Cognitive Biases 

The biases found in research in medicine and education may also be applicable to the GA pilot 

population. For example, assuming that pilot actions can be either safe or unsafe, to various degrees, 

we can describe a flight on two scales: based on how safe it was, or how unsafe it was. A flight 

that ranks high on the safety scale will rank low on the risk scale. While mathematically both scales 

are describing the same thing, pilots may perceive them differently. Risk compensation may result 

in pilots not taking any risk reduction measures after a flight that ranks high on the safety spectrum, 

whereas presenting the same flight as ranking low on a risk scale may motivate pilots to reduce 

their risk. At the same time, pilots may also classify a flight that is low on the risk scale (for 

example, 10% risky, or 90% safe) as a safe flight and dismiss the hazardous states that were present 

in the flight, since it was an overall safe flight. However, the actions pilots are motivated to take 

following feedback may differ depending on whether the feedback was framed on a safety scale 

or a risk scale (Fala & Marais, 2019a).  

 

Based on the literature review on risk communication research in other disciplines, I focus this 

research on the three factors shown in Table 5, which may affect how pilots perceive their safety-

driven feedback.  
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Table 5: In this research, I investigate three factors that may bias pilots in their perception of safety-

driven feedback, based on a review of the risk communication literature. 

Factor Method description 

Language 
Risk-centric language and risk scales 

Safety-centric language and safety scales 

Representation 

method 

Graphical representations 

Numerical representations 

Parameter type 
Parameters that refer to the system’s safety 

Parameters that refer to the system’s performance 

 

The remainder of this Chapter discusses how these three factors may affect risk perception and 

feedback effectiveness and how they apply to the different takeoff phase of flight states from 

Chapter 3.  

4.4.1 Framing Language 

Using language to frame a flight’s risk may affect how pilots respond to their debrief feedback. 

Objectively, grading a flight on a risk scale (a 5-point Likert scale where 5 is extremely risky, for 

example) or a safety scale (with 5 being extremely safe) does not make a difference. Ranking a 

flight as a 4 on a 0 to 5 safety scale is mathematically the same as ranking the same flight as a 1 

on a 0 to 5 risk scale. However, if the research on framing applies to the pilot population, pilots 

may respond more urgently to their feedback if they think of it in terms of risk, or if I present it to 

them using risk-centric language.  

4.4.2 Representation Method 

In medicine, doctors are cautious about using numerical methods to communicate risk to patients, 

as those methods rely upon the patient having adequate numeracy. However, the pilot population 

may be different than the patient population, since getting a pilot’s license requires them to take a 

written test that includes mathematical calculations. Pilots may also prefer the exactness of 

quantifiable measurements as opposed to the potential vagueness of graphical representations. 

Figure 15 applies a graphical and numerical representation method to the Inadequate runway 

distance remaining hazardous state as an example.  
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(a) (b) 

Figure 15: Screen (a) uses a graphical representation to show the user where on the runway the 

aircraft took off, whereas screen (b) uses numbers to tell the user how much runway they had 

remaining after the takeoff point. 

 

All states can be represented numerically or graphically. For example, Engine RPM can be stated 

as a peak value during the takeoff phase or plotted on a graph. Airspeed at rotation may be 

indicated on a picture of the airspeed indicator, and the wind components can be shown using 

arrows or wind sock pictures. 

4.4.3 Parameter Type 

Giving risk feedback to pilots on behaviors that may never result in an accident can result in them 

questioning and eventually ignoring the feedback. Some pilot behaviors may not be entirely risky 

in nature, but preventing them will still improve flying technique. For example, touching down 

further down a long runway is arguably not unsafe, if there is sufficient runway remaining to stop 

(and in some cases, it may even be preferable). However, on a shorter runway, landing further 

down the runway instead of closer to the beginning may result in a runway excursion if the aircraft 

does not have enough space to come to a stop. A pilot can still improve by landing closer to the 

beginning of the runway. Calling the second case a performance concern instead of a safety 

concern clarifies the intent of the feedback before the pilot demands proof that landing further 

down the runway is unsafe. Wording in behaviors that are not impacting flight safety with high 

certainty may therefore affect pilots’ willingness to make changes to their flying. For example, 

landing 2,000 ft from the beginning of the runway is unsafe on a short runway but not unsafe on a 
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long runway. Touching down 1,000 ft from the end of the runway, however, is arguably unsafe in 

both cases. Figure 16 displays information about the Insufficient runway remaining distance 

hazardous state framed in terms of safety and performance parameters. Measuring the distance 

remaining from the end of the runway informs the pilot how close they are to an unsafe situation, 

whereas measuring the distance actually used to take off tells them how close they were to the 

runway distance they calculated during their preflight based on the conditions.   

 

 

(a) (b) 

Figure 16: The performance parameter in the popup message in Screen (a) gives the pilot the actual 

takeoff distance, which is the performance parameter. Screen (b) uses a safety parameter to give 

the pilot the runway distance remaining at the takeoff point.  

 

Similarly, centerline deviation is a performance parameter since it measures the distance from the 

aircraft’s longitudinal axis to the runway centerline, whereas its complement, the distance 

measured from the runway edge, as shown in Figure 17, is a safety parameter.  
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Figure 17: Lateral deviation on the runway can be measured from two reference points: in the 

safety parameter case, it is a measure of distance from the runway edge to the aircraft. In the 

performance parameter case, the deviation is the distance from the runway centerline, commonly 

referred to as centerline deviation. 
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5. EXPERIMENT DESIGN 

To evaluate whether pilots are susceptible to the biases described in Chapter 3, I designed a survey 

that I disseminated to pilots using various aviation mailing lists and groups. The survey asked 

pilots to self-debrief a set of three sample flights using modified CloudAhoy screenshots and assess 

each flight’s risk. This Chapter discusses the survey questions and dissemination, as well as the 

full-factorial experiment design that I used to evaluate the effect of each of the three factors 

described in Section 4.4.  

 Survey Design and Dissemination 

The survey is web-based to maximize the number and diversity of potential respondents. An 

internet survey has the potential to collect data from a large and diverse sample of participants 

(Leong & Austin, 2006). A web survey gives access to individuals in distant locations or 

participants who may be otherwise difficult to reach (Wright, 2005). At the same time, though, 

web surveys also introduce biases. Self-selection bias results in a systematic bias, where some 

individuals are more likely than others to complete the survey, while others will tend to ignore the 

invitation to participate in the online survey. In my case, it is possible that self-selection bias will 

result in people who have a safety-mindset being more likely to respond to the survey. 

Nonresponse bias arises when the responses of individuals who take the survey differ from those 

of individuals who opt out. Such sampling issues inhibit our ability to generalize and estimate 

population parameters. However, the higher response rate of web-based surveys makes them less 

vulnerable to biases due to unrepresentative samples. In my case, a representative sample would 

consist of approximately 10% women, 40% private pilot license holders, and 25% commercial 

pilot license holders. 

 

The survey was disseminated via various aviation groups, newsletters, and mailing lists. The Curt 

Lewis and Associates Flight Safety Information newsletter is distributed daily to more than 36,000 

subscribers and is tailored to people with an interest in aviation safety. The Partnership to Enhance 

General Aviation Safety, Accessibility, and Sustainability (PEGASAS) flight schools forwarded 

the survey to their students. Multiple social-media based groups of pilots, such as the FAA’s 
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General Aviation Safety group also responded to the survey. I encouraged snowball sampling by 

generating a constant survey link that respondents could forward to other pilots. Snowball 

sampling resulted in the survey being forwarded to flying clubs and the Ninety Nines. Overall, 

about 1,100 people accessed the survey introduction by clicking on the link.  

 

The survey consists of three main parts, as depicted in Figure 18. Each survey starts with an 

introduction and a tutorial, which shows the pilots how to use the debrief tool and explains the 

purpose of the survey. The survey ends with the Demographics section, which asks pilots 

demographic questions, to help identify whether pilots are biased differently depending on their 

characteristics and experiences. The Debrief randomizer segment of the survey, further explained 

in the following sections, assigns each respondent specific feedback representation methods in 

flights to debrief. All pilots received the same flights to debrief, but the representation method for 

each flight was randomized. Respondents were able to stop taking the survey at any point.  

 

 

Figure 18: The white blocks in the survey structure represent the parts of the survey that are the 

same for every respondent. The flight randomizer in the middle allows me to evaluate whether 

pilots have biases by showing them data in different formats in the flights they are evaluating.  

 

For each of the three flights, I created an interactive prototype debrief tool (Figure 19) using 

CloudAhoy screenshots and adding information on hazardous states. Respondents are able to 

interact with the screens to go back and forth between different displays, taking as much time as 

they need. The pilots have to pretend that this is a flight that they have just completed, and they 

have to answer the questions posed based on the information on the screens alone. 
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Figure 19: Each flight has its own introduction and debrief screen, where pilots can interact with 

the debrief tool before continuing on to the questions. 
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 Flights 

I chose three flights to create debrief screens out of a larger set, based on the number of hazardous 

states in each flight. All flights originated at The Ohio State University Airport (KOSU) and were 

in a Cessna 172, an aircraft with which most pilots are familiar. 

  

Flight A had four hazardous states—the aircraft rotated at a low airspeed while taking up too much 

of the runway, in a slight tailwind, and with a high centerline deviation. Flight B had a low Engine 

RPM and high airspeed at takeoff, but was otherwise safe. Flight C had a high centerline deviation 

and the takeoff took up too much of the runway. The airspeed at rotation was also slightly low. 

While the total risk of a flight cannot be measured with certainty, a simple risk metric is useful in 

comparing the three flights, as shown in  

Table 6. I model the identified flight risk as a function of the hazardous states and triggers that 

were detected in the flight data, using a simple additive weighted model. This risk metric depends 

on not only the number of states and triggers, but also on their severity. For example, being 1 kt 

faster than recommended is not as dangerous as being 10 kts faster. To account for the various 

levels of risk, I divide each hazardous state into j qualitative degrees of risk, R1, to Rj, in order of 

increasing severity. For example, deviating slightly from the runway centerline during takeoff but 

correcting for it quickly is a less hazardous state (R1), but if throughout the takeoff the aircraft is 

increasingly deviating from the centerline, getting close to the edge of the runway, without any 

corrections, it becomes a more severe hazardous state (Rj). 

 

I therefore model the total risk of a flight using Equation 1, where n is the total number of 

hazardous states and triggers that are being considered, j is the degree of risk for each hazardous 

state or trigger, k is the total number of risk levels chosen, and aj  is the weighting factor for each 

risk level. 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘 = ∑ ∑ 𝑎𝑗𝑅𝑗𝑖

𝑛

𝑖=1

𝑘

𝑗=1

 (1) 

 

For the takeoff example, I consider five hazardous states and three risk levels, as shown in Equation 

2, where a1 = 1, a2 = 3, and a3 = 5. These weighting factors increase the metric when higher risk 

hazards are present but still account for low risk hazards.  
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𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑅𝑖𝑠𝑘 = ∑ ∑ 𝑎𝑗𝑅𝑗𝑖

5

𝑖=1

=

3

𝑗=1

∑ 𝑅1𝑖

5

𝑖=1

+ 3 ∑ 𝑅2𝑖

5

𝑖=1

+ 5 ∑ 𝑅3𝑖

5

𝑖=1

 (2) 

 

I then scale the risk metric so that it can take values from 0 to 10, with 10 being the safer end of 

the spectrum, and 0 describing an unsafe flight. As shown in Equation 3, I divide by the risk metric 

of a hypothetical flight where all possible hazardous states and triggers occurred at an R3 risk level. 

  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 = 10 − 10 ×
𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑅𝑖𝑠𝑘

5 ∑ 𝑅3𝑖
5
𝑖=1

 
(3) 

 

Table 6: I assigned scores of 1, 2, and 3 on the different hazardous states that were present in each 

flight based on how severe they were. Based on the final scaled safety metrics, Flight A is the 

riskiest one. 

State Flight A Flight B Flight C 

Insufficient takeoff power 0 1 0 

Inadequate/High airspeed at 

rotation 
3 5 1 

High tailwind or crosswind 

component 
1 0 0 

Insufficient runway distance 

remaining at takeoff 
3 0 3 

Deviation from centerline 3 0 3 

Total Takeoff Risk: 10 6 7 

Scaled Safety Metric: 6 7.6 7.2 

 Debrief Randomizer 

Table 5 lists the eight possible ways of communicating risk messages in my full-factorial design 

experiment. For example, a hazardous state can be communicated in a graphical or numerical way. 

The two representations may bias the pilot differently, with one representation causing the pilot to 

think that a behavior is safer than another representation. Each factor in Table 5 has the potential 

to bias the pilot. Additionally, combinations of factors can affect pilots differently. For example, 

pilots may respond similarly to graphical and numerical methods, and risk-centric and safety-
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centric framing language methods, but at the same time respond differently to graphical methods 

that use risk-centric language. Table 7 shows a 23 full-factorial design with two-way interactions 

between the factors outlined in Table 5. 

Table 7: The three factors result in eight possible combinations of factors that can be used in 

designing risk communication messages.  

Combination Representation Method Parameter Type Framing Language 

1: [+1 +1 +1] Graphical representation Performance parameter Safety-centric language 

2: [+1 +1 −1] Graphical representation Performance parameter Risk-centric language 

3: [−1 +1 +1] Numerical representation Performance parameter Safety-centric language 

4: [−1 +1 −1] Numerical representation Performance parameter Risk-centric language 

5: [+1 −1 +1] Graphical representation Safety parameter Safety-centric language 

6: [+1 −1 −1] Graphical representation Safety parameter Risk-centric language 

7: [−1 −1 +1] Numerical representation Safety parameter Safety-centric language 

8: [−1 −1 −1] Numerical representation Safety parameter Risk-centric language 

 

The debrief randomizer function will randomly assign each pilot who takes the survey to one of 

the eight groups in Table 7. For example, in the first treatment combination, the debrief consists 

of graphical representations that use safety-centric language, and they describe parameters that 

refer to the system’s performance, whereas in the last treatment combination, the debrief consists 

of are numerical representations that use risk-centric language and describe the safety of the system.  

 

The first two factors in Table 7 (representation type and parameter type) are used in the debrief 

screens and messages, and the third factor (framing language) is used in the survey questions 

(Section 5.4). 

 Survey Questions 

As discussed in Chapter 3, I evaluate feedback effectiveness based on two characteristics: the 

accuracy of the perceived risk, and the pilot’s willingness to change the identified unsafe behaviors.  
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5.4.1 Perceived Risk 

The questions on the first post-debrief screen, shown in Figure 20, aim to address perceived risk. 

The first question, Given the information presented to you, how risky would you say this takeoff 

was? asks the pilot to rate the risk or safety of the flight on a 5-point Likert scale. Depending on 

whether the test is evaluating risk-centric language or safety-centric language, the question asks 

the pilots to use a risk scale or a safety scale, respectively. If different treatment combinations are 

affecting pilots’ risk perception, then there will be a difference in the response distribution for 

Question 1 among different combinations.  

 

The second question, In this takeoff, which of the following would concern you, if any? aims to 

investigate whether pilots identified the appropriate hazardous states in the takeoff. The pilots also 

have the opportunity to add comments.  
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Figure 20: The first few questions address the risk perception part of the feedback effectiveness. 

The Likert scale changes depending on whether the respondent belongs to a risk-centric or safety-

centric framing language treatment group.  
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5.4.2 Motivation to Change 

To capture how likely pilots are to use the information provided to improve their future flights, I 

ask them to come up with changes that they could make to an upcoming flight, as shown in Figure 

21. The three factors I am investigating could potentially impact the number of changes pilots 

recommend. Pilots may choose to say they would not make any changes.  

 

 

Figure 21: Respondents could suggest up to five changes that they could make to an upcoming 

flight after reviewing their debrief.  

 

The answers to the question in Figure 21 feed into the next two questions: How likely are you to 

make each of these changes to an upcoming flight? and How important do you think each of these 

changes is to reducing risk on takeoff? shown in Figure 22. If the respondent does not indicate that 

they would make any changes, they are not presented with these questions. Effective risk messages, 

however, will motivate the pilots to change something that they have identified as being unsafe, 

so if the feedback is effective, I expect to see at least one of the changes rank highly on the 

‘likelihood’ scale. 
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Figure 22: The respondents get two more Likert scale questions for each change they say they may 

make to an upcoming flight, asking about the likelihood of them actually making the changes as 

well as the importance of each change.  

 

The respondents debrief three flights, and therefore answer these questions three times before 

moving on to the demographic questions.  

 Demographics 

This section outlines the demographic questions that each respondent will have a chance to answer. 

None of them are mandatory, so some pilots may end up skipping all of them. However, since the 

demographic questions come at the end, the rest of the responses to the survey are still useful if a 

pilot decides not to participate in the last part. Most of these questions are multiple choice, with 
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some of them requiring the respondent to type in a short answer, either numerical or a one-word 

response. 

1. How old are you? 

18-24; 25-34; 35-44; 45-54; 55-64; 65 or older 

2. What gender do you identify with? 

Male; Female; Other; Do not wish to specify 

3. What is the highest level of education you have completed? 

Some high school; High school graduate or equivalent; Some college; 2-year degree; 4-

year degree; Master’s degree; Doctorate or Professional degree 

4. What is your occupation? 

[Type in answer] 

5. What kind of pilot’s license do you currently hold? 

No certificate; Student; Sport; Recreational; Private; Commercial; Airline Transport 

6. Which ratings or endorsements do you currently hold? 

Single-engine; Multi-engine; Instrument, Rotorcraft-Helicopter; Glider; Lighter-than-air; 

Seaplane; Complex; Tailwheel; High altitude; High performance; Flight instructor; 

Instrument flight instructor; Multi-engine flight instructor 

7. How many years of flying experience do you have? Round to the nearest year. 

[Type in answer] 

8. Was your flight training under Part 61 or Part 141? 

Part 61; Part 141; Both; I do not know 

9. What kind of avionics do you most frequently use when you fly? 

Mostly steam gauges; Mostly glass cockpit; Both 

10. How many flight hours do you have logged (approximately)? 

[Type in answer] 

11. How often do you fly? 

2-7 days a week; Once a week; Once a month; Once every few months; Rarely/Never 

12. How often do you participate in aviation safety programs and seminars (such as WINGS, 

FAASTeam seminars, etc.)? 

Monthly; 2-3 times a year; Once a year; Once every two years; Never 

13. What is your home airport base? (ICAO identifier or city/state) 
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[Type in answer] 

14. Have you used commercial debrief products, like CloudAhoy, before? 

Yes; No 
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6. SURVEY ANALYSIS 

As described in Chapter 5, the experiment consisted of a full factorial design with three factors. 

The three factors are representation method (X1), parameter type (X2), and framing language (X3). 

I want to ascertain the importance of each factor on Risk Perception (Y1) and Behavior 

Change (Y2). Each factor Xi has two levels, +1 and −1. For example, the Language factor, X1, can 

take Risk-centric Language at the +1 level and Safety-centric Language at the −1 level. Since there 

are three factors, each run at two levels, there will be 23 = 8 treatment combinations. Using a full 

factorial design allows me to investigate how multiple factors affect the output—risk perception 

and post-debrief behavior (Fala & Marais, 2019b). 

 

The survey resulted in 187 responses that were entirely complete and a total of 268 usable 

responses. A usable response is any response where the pilot debriefed and responded to the 

questions of at least Flight A, whereas in a complete response the pilot has debriefed all three 

flights and then answered the demographic questions at the end. Since the survey consisted of three 

separate flight scenarios presented in the same order, I start by treating the three flights as distinct 

experiments. Flight A has 268 responses in total, Flight B has 195 responses, and Flight C has 189 

responses. Table 8 shows the number of responses (replicates) for each treatment combination. 

Not randomizing the flights allowed me to maximize the number of responses for Flight A. 

improving the power of the tests on Flight A. Randomizing the flights would have improved the 

response rate on Flights B and C, with all flights resulting in approximately the same number of 

responses but would have also decreased the power for the analysis on Flight A. Not randomizing 

the three flights would provide equal representation for all flights in terms of responses, but getting 

an adequate power for the statistical analysis would require a high overall response rate.  

 

The distribution of the overall risk perception data for Flight A (Figure 24, Appendix III) displays 

a bell-curve shape that is slightly skewed towards riskier values. The horizontal axis in Figure 24 

consists of ordinal Likert-scale data from 1 to 5. The median and mean are close together, at 3 and 

3.10 respectively, but while the ordinal scale used has a rank order, the intervals between values 

may turn out to not be equal (Jamieson, 2014). The overall distribution for the responses for Flight 
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B, shown in Figure 25 in Appendix III, is flatter and slightly skewed towards less risky values, 

with a standard deviation of 1.18. While the median (3) and mean (2.99) closely match those of 

Flight A, the responses tend to spread further away from the median. The distribution of Flight C 

responses (Figure 26, Appendix III) resembled the bell-curve of Flight A. Although Flight C has 

less responses, it maintained the central tendency around the neutral point, with the median (3) and 

mean (2.93) being very similar to those of Flights A and B. Overall, the pilots were able to 

understand the relative differences in risk between the three flights, but a lot of them chose to 

respond using the neutral option (i.e., 3 on the Likert scale), so the mode was 3 in all three flights. 

While I use non-parametric statistical analysis methods in this Chapter, I will also compare the 

results to methods used for normally-distributed continuous data because of the bell-curve shape 

of the data and the large sample size. 

 

To determine how the three factors (representation method, parameter type, and framing language) 

independently impact the risk perception responses, I first created histograms of the response 

variable separated by factor levels. The difference in how the three factors influenced the results 

on the three flights suggests that the type of flight, level of risk, or type of hazardous states present 

in the flight could be additional factors that change how risk perception is affected.  

 

In this Chapter, I first discuss the demographics and sample sizes that resulted from the survey, 

and then analyze the survey results using metrics that capture both facets of risk effectiveness. I 

use the answer to the question “How risky do you think this takeoff was?” to evaluate how two 

groups of pilots perceived their risk relative to each other, and the number of changes they report 

to the question “What changes do you think you could make to an upcoming flight as a result of 

the information presented here, if any?” The analysis is structured as follows: I first analyze the 

main effects of each of the three factors (representation method, parameter type, and framing 

language) on all metrics. I then analyze any interaction effects between the three factors and 

discuss the overall results.   

 Demographics 

Out of all respondents, 188 worked on the demographics section. I deliberately designed the survey 

to transition through the three flight debriefs first before getting to demographics, so that I could 
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still analyze data from respondents who decided to not finish the survey. Approximately 70% of 

the responses (i.e., those which had at least Flight A) were complete (had Flight A, B, C, and 

provided demographic information). Out of the respondents who provided demographic 

information, the majority were male (71% male and 26% female) and also completed at least a 4-

year degree (76%). The majority of the sample consisted of private (49%) and commercial pilots 

(30%), with 58% of all respondents also having an instrument rating. Most respondents fly 

primarily aircraft with steam gauges (64%) and fly at least weekly (59%). The survey also reached 

pilots who are not as heavily involved in aviation—23% fly once a month, and 8% rarely fly. A 

few respondents (21%) reported that they never participate in aviation safety programs (such as 

the WINGS program, seminars, or training videos). Training for the largest portion of pilots was 

exclusively under Part 61 regulations (43%), while 13% of pilots trained exclusively through Part 

141 schools, 31% in a combination of Part 61 and 141 programs, and another 13% did not know 

what kind of training they followed. Surprisingly, 88% had never used commercial debrief or flight 

visualization products like CloudAhoy before.  

Table 8: As expected, not everyone completed the survey, which resulted in Flight A having more 

responses overall than Flights B and C. Most people stopped the survey after Flight A, with people 

being likely to complete the entire survey if they made it to Flight B.  

Treatment 

Combination (X) 

Responses 

Flight A (268) Flight B (195) Flight C (189) 

1: [+1 +1 +1] 35 29 19 

2: [+1 +1 −1] 31 19 22 

3: [−1 +1 +1] 44 24 28 

4: [−1 +1 −1] 33 29 24 

5: [+1 −1 +1] 23 22 23 

6: [+1 −1 −1] 34 21 19 

7: [−1 −1 +1] 33 26 27 

8: [−1 −1 −1] 35 25 27 

 Representation Method 

The representation method factor could take one of two levels: graphical, or numerical. Table 9 

shows the number of responses corresponding to each level of the representation method factor for 

each flight. Although the survey software presented the graphical and numerical representation 

type versions of the survey to equal numbers of respondents, noticeably fewer respondents 

completed the graphical version of the survey, for all three flights. This discrepancy potentially 
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suggests that pilots prefer to review numerical data, instead of trying to decipher graphical 

information. A chi-square test does not support the hypothesis that the completion ratios among 

graphical representations and numerical representations are different. The median pilot took 

89 seconds to review their debrief in Flight C for both representation types, 116 seconds and 

95 seconds in Flight B for graphical and numerical representation methods respectively, and 

49 seconds and 60 seconds in Flight A for graphical and numerical representation methods 

respectively.  

Table 9: The responses were split unevenly between the graphical and numerical levels. Overall, 

the number of responses decreased with each flight, and more people responded to the numerical 

representation version of the survey. The percentages represent the completion ratio among pilots 

who saw the specific survey version. For example, 368 pilots were presented with the graphical 

representation method version of the survey for Flight A, and 123 completed it, resulting in a 33% 

completion percentage. The completion ratio increased with each flight.  

 Number of responses 

Flight Graphical Numerical Total 

A 123 33% 145 39% 268 36% 

B 91 64% 104 73% 195 68% 

C 83 77% 106 98% 189 88% 

 

Figure 30 in Appendix III separates the responses of pilots who debriefed the flight graphically 

and numerically for all three flights in six histograms. The representation method factor changed 

the response mode only in Flight B. Flight C appeared to be largely unaffected. Flight A 

maintained the same mode, but the graphical representation was more uniform in distribution 

around the mid-point than the numerical level. Flights A and B seem to have moved in opposite 

directions—the graphical representation moved the responses slightly towards the riskier side in 

Flight A compared to the numerical representation, but distinctively towards the less risky side in 

Flight B. Table 10 shows some of the descriptive statistics on risk perception for the graphical and 

numerical representation methods among the three flights. Section 5.2 discussed one way to 

calculate the risk in a takeoff based on the number and severity of the hazardous states present in 

it. Using that metric, Flight A is the riskiest takeoff, and Flight B the safest takeoff. This ranking 

appears in the mean risk perception score for the graphical representation, but the highest mean in 

risk perception across all three flights for the numerical representation suggests that the pilot 

sample thought that Flight B was the riskiest takeoff among the three flights. 
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Table 10: The way pilots rated their risk changed between graphical and numerical representation 

methods. The largest change happened in Flight B, with the mean increasing from 2.76 in the 

graphical method to 3.20 in the numerical method.  

 Risk rating 

 Graphical Numerical 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 3.1951 0.9889 3 2 3.0138 1.0340 3 2 

B 2.7582 1.2679 3 2 3.2019 1.0647 3 2 

C 2.9277 0.9342 3 2 2.9340 1.0353 3 2 

 

The number of changes the pilots suggested after reviewing their feedback is an indication of how 

motivated they are to change unsafe behaviors. Overall, the safer takeoff in Flight B resulted in a 

lower number of suggested changes, and the riskier takeoff in Flight A in more changes, as shown 

in Table 11. The riskier takeoff also resulted in pilots suggesting more changes they would make 

to an upcoming flight. Figure 31 in Appendix III shows the effect of representation method on the 

number of changes the pilots came up with in each of the three flights. Although the numerical 

representation did decrease the number of respondents who opted for no changes after their debrief 

in Flights B and C, the same did not apply to Flight A, the riskier flight. In Flight B, in particular, 

the numerical representation resulted in most respondents saying they would make two changes, 

whereas the mode for the graphical representation method was zero. The average response among 

pilots was a total of 50 (graphical representation) and 52 (numerical representation) characters in 

length for Flight A, as shown in Table 33 in Appendix III, 36 and 53 for Flight B, and 51 and 45 

for Flight C. 

Table 11: The number of changes pilots suggested after reviewing their debrief ranged from zero 

to five. The numerical representation method resulted in a higher number of changes overall. 

 Number of changes 

 Graphical Numerical 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 1.3984 1.3474 1 2 1.5724 1.3629 2 3 

B 1 0.9661 1 2 1.3654 0.8251 1 1 

C 1.3133 1.1575 1 2 1.5377 1.0882 2 1 

 

The Mann Whitney U test showed statistical differences in the numerical and graphical 

distributions for the risk perception in Flight B but not Flights A or C. I used the Mann Whitney 
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U Test because the survey data consists of a categorical independent variable (representation 

method) of two levels (numerical and graphical) and an ordinal dependent variable (Likert-scale 

data). 

 

The results suggest that choosing a numerical representation when communicating risk to pilots 

can potentially push them towards seeing a higher level of risk in their flights and also make them 

more willing to change their behaviors. Pilots also had a greater tendency to give up on the 

graphical methods, perhaps being frustrated at having to decipher information. These findings 

suggest that the risk communication biases in other fields may not be applicable to aviation—in 

medicine, patients prefer graphical methods, often due to a lack of numerical literacy, which is not 

the case among pilots.   

 Parameter Type 

The parameter type factor can also take one of two values: safety parameters, or performance 

parameters. Parameter type refers to whether the parameter is presented in terms of risk or 

performance. For example, comparing the amount of runway that the pilot used in taking off to the 

takeoff distance specified in the aircraft handbook, tells the pilot how close they were to the 

nominal way of flying in comparison to the handbook. Reporting the amount of runway that 

remained after takeoff instead (i.e., the runway length that was not used) aims to communicate 

how much room for error the pilot had, based on how close the pilot and aircraft are to an unsafe 

situation or incident. In the first case, the pilot should want to minimize the number; in the latter 

case, a higher number is better. Table 12 shows the number of responses corresponding to each 

level of the parameter type factor for each flight. In this parameter, there is no consistent 

discrepancy between number of responses for the two levels.  

 

The median pilot took 88-99 seconds to review their debrief in Flight C for both parameter types, 

106 seconds and 102 seconds in Flight B for performance parameters and safety parameters 

respectively, and 60 seconds and 46 seconds in Flight A for performance and safety parameters 

respectively. Similar to the results for representation method, the respondents in Flight C took 

more time to review their debrief and the time responses are less affected by outliers and the people 

who decided not to continue.  
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As shown in Table 12, the completion rates were more even among safety and performance 

parameters. The difference in completion rates between safety and performance parameters was 

less than or equal to 5% in all three flights.   

Table 12: The responses were split more evenly between the performance parameter and safety 

parameter levels compared to the representation method factor.  

 Number of responses 

Flight Performance Safety Total 

A 143 39% 125 34% 268 36% 

B 101 71% 94 66% 195 68% 

C 93 86% 96 89% 189 88% 

 

Figure 32 in Appendix III separates the risk perception responses of pilots who debriefed the 

takeoffs in terms of safety parameters and performance parameters for all three flights. The 

distribution of risk perception responses in Flight A had a slightly smaller variance in the safety 

representation. The safety parameters in Flight B moved the responses to the right, towards 

extremely risky, with a different mode in the safety and performance parameters cases. The 

parameter type made no noticeable difference in Flight C. Both Flight A and C maintained the 

same mode.  

 

Table 13 shows some of the descriptive statistics on risk perception for the performance and safety 

parameter types among the three flights. According to the risk metric, Flight A is the riskiest 

takeoff, and Flight B the safest takeoff. The means among the three flights for the performance 

parameter correspond to the risk metric ranking, but the mean for the safety parameter for Flight 

B suggests that it would be the riskiest takeoff among the three flights. 

Table 13: Pilots risk perception changed between performance and safety parameter types in Flight 

B, with the mean increasing from 2.63 in the performance parameter type to 3.38 in the safety 

parameter type.  

 Risk rating 

 Performance Safety 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 3.1538 1.0299 3 2 3.0320 0.9995 3 2 

B 2.6337 1.0145 3 1 3.3830 1.1742 3 1 

C 2.9570 0.9659 3 2 2.9063 1.0165 3 2 
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Figure 33 (Appendix III) shows the distributions of the number of changes pilots suggested after 

reviewing their debrief for all three flights, split by parameter type. The safety parameter increased 

the number of changes pilots suggested after reviewing their feedback in Flights B and C, but 

decreased the mean of the number of changes in Flight A, as shown in Table 11. For the riskier 

takeoff in Flight A, pilots suggested more changes they would make to an upcoming flight when 

presented with the performance parameters. The safety parameter version of the debrief reduced 

the respondents who opted to continue without making any changes in Flight B and C (the safer 

takeoffs), but increased the “no changes” responses in Flight A (the riskier takeoff). The average 

response among pilots was a total of 56 and 46 characters in length for performance and safety 

parameters respectively in Flight A, as shown in Table 33 in Appendix III, 37 and 54 in Flight B, 

and 48 and 59 in Flight C. The discrepancy between the two groups is higher in the parameter type 

factor than the representation method factor. 

Table 14: The numerical representation method resulted in a higher number of changes overall. 

 Number of changes 

 Performance Safety 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 1.6364 1.3612 2 3 1.3280 1.3367 1 2 

B 1.000 0.8602 1 2 1.4043 0.9196 1 1 

C 1.3226 1.0951 1 2 1.5521 1.1413 1.5 1 

 

Similarly to the representation method, the Mann Whitney U test showed statistical differences in 

the performance and safety parameter type distributions for the risk perception in Flight B (p-value 

6.9202e-06) but not Flights A or C (p-value 0.4316 and 0.7806 respectively). 

 

From the results presented in this section, it is not clear whether risk communication for pilots 

should use performance parameters, safety parameters, or a combination of the two types. 

Performance parameters encouraged pilots in Flight A to rank the takeoff as being riskier and 

suggest more changes, whereas safety parameters did the equivalent for Flight B.  
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 Framing Language 

Figure 34 in Appendix III shows how pilots responded when asked “How risky would you say this 

takeoff was?” versus “How safe would you say this takeoff was?” While mathematically a flight 

that is not too risky is by definition very safe, the phrasing did affect how pilots perceived the risk. 

Although Flight C was not affected by the framing language, as with the other two factors, in the 

safety-centric language there is a higher concentration towards the neutral value. However, the 

framing language factor changed the mode in Flight B and altered the distribution in Flight A. 

Flight B also shows a general movement towards the riskier side when using a safety-centric 

framing language. 

 

Table 15 shows the number of responses corresponding to each level of the parameter type factor 

for each flight. In this parameter, the difference between the number of responses for the two levels 

is small and inconsistent among the three flights. The difference in completion rates between safety 

and performance parameters was less than or equal to 5% in all cases.   

Table 15: The complete responses were split evenly between the safety-centric language and risk-

centric language levels compared to the representation method factor.  

 Number of responses 

Flight Safety-centric Risk-centric Total 

A 135 37% 133 36% 268 36% 

B 101 71% 94 66% 195 68% 

C 97 90% 92 85% 189 88% 

 

Figure 34 in Appendix III separates the risk perception responses of pilots who debriefed the 

takeoffs in a safety-centric language and in a risk-centric language for all three flights. The framing 

language did not make a difference in Flight C. The impact on Flight A was different than the 

impact on Flight B—in the first case, framing the question in safety-centric language resulted in 

more people saying the flight was not safe, whereas in the second case framing the question in 

risk-centric language decreased the number of people saying the flight was not risky and increased 

the number of people reporting that the flight was risky. 

 

Table 13 shows some of the descriptive statistics on risk perception for the risk-centric and safety-

centric framing languages among the three flights. The framing language resulted in a change in 
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the mean in Flight A but did not affect Flights B or C. While framing language changed the mode 

in Flight B, it did not change the mean, so an ANOVA could not report that change since it only 

compares the means.  

Table 16: The framing language caused a slight change in the means of the risk perception in 

Flight A.   

 Risk rating 

 Safety-centric Risk-centric 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 3.2519 1.0631 3 1.75 2.9398 0.9436 3 2 

B 2.9802 1.0953 3 2 3.0106 1.2742 3 2 

C 2.9897 0.9947 3 2 2.8696 0.9858 3 2 

 

Figure 35 (Appendix III) shows the distributions of the number of changes pilots suggested after 

reviewing their debrief for all three flights, split by framing language. The distributions look the 

same for all flights independent of the framing language used. Table 14 shows the descriptive 

statistics for all three flights. The average response among pilots was a total of 55 and 50 characters 

in length for the safety-centric and risk-centric framing languages respectively in Flight A, as 

shown in Table 33 in Appendix III, 46 and 44 in Flight B, and 51 and 55 in Flight C. The difference 

between the two framing languages is much lower in this factor than the representation method 

and parameter type factors.  

Table 17: The framing language did not change the number of changes that the pilots said they 

would make to an upcoming flight. 

 Number of changes 

 Safety-centric Risk-centric 

Flight Mean 
Standard 

Deviation 
Median IQR Mean 

Standard 

Deviation 
Median IQR 

A 1.5556 1.3308 2 2 1.4286 1.3833 1 3 

B 1.1486 0.9098 1 2 1.2447 0.9121 1 1 

C 1.4536 1.1816 2 2 1.4239 1.0611 1 1 

 

The Mann Whitney U test showed statistical differences in the safety-centric and risk-centric 

framing languages for the risk perception in Flight A (p-value 0.0093) but not Flights B or C (p-

value 0.9770 and 0.4758 respectively). 
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From the results presented in this section, I cannot conclude that debrief should be using one 

particular framing language over the other, since framing language was only significant in one of 

the flights (the riskiest takeoff), and additional experiments are required.   

 Interaction Effects 

I ran the full complement of all possible factor combinations to estimate all of the main effects 

between the factors and the results, as well as any interaction effects between factors. The full 

factorial design has three main effects and three two-factor interactions. 

 

To test for interaction effects, I used the Scheirer-Ray-Hare non-parametric test for each flight. 

Because the Scheirer-Ray-Hare test is used for a two-way factorial design, I ran it with three 

combinations of two-factor pairs (Table 21, Appendix III). For Flight A, this test identified the 

framing language factor as a main effect on the risk perception response and the representation 

method and parameter type factors together as an interaction effect. The parameter type factor was 

a main factor that impacted the number of changes the pilots recommended in Flight A. A three-

way ANOVA identified the same main and interaction effects (Table 27, Appendix III). Neither 

the Scheirer-Ray-Hare test (Table 22, Appendix III) nor the ANOVA (Table 28, Appendix III) 

identified any main effects or interaction effects which impact the number of changes pilots 

suggest after reviewing their debrief. In Flight B, both the Scheirer-Ray-Hare test (Table 23 and 

Table 24 in Appendix III) and the ANOVA (Table 29 and Table 30 in Appendix III) identified 

representation type and parameter type as main factors in both risk representation and the number 

of changes pilots suggested they would make. There were no significant main or interaction effects 

in Flight C (Table 23, Table 24, Table 31, and Table 32 in Appendix III).  

 

Since the flight appears to be a factor in how different representation methods affect pilots, I ran a 

four-way ANOVA (Table 18) for representation type (two levels), parameter type (two levels), 

framing language (two levels), and flight number (three levels) as factors, considering all data 

points together rather than separating by flight. Parameter type affects responses significantly 

across all three flights. The performance parameter type results in pilots rating their risk as lower. 

Framing language also impacts pilots across all three flights, although not at the 5% significance 

level. Safety-centric language results in pilots rating their risk as higher. There is an interaction 
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effect between representation type and parameter type across the board. The flight interacts with 

the representation method and parameter type factors, suggesting that representation type and 

parameter type may impact pilots differently depending on the flight.  

Table 18: The ANOVA test indicates that parameter type (and framing language, to a lesser extent) 

affect how pilots rate their risk across all three flights. The parameter type interacts with the 

representation method. The flight interacts with representation method and parameter type but not 

with framing language.  

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Repres 0.829 1 0.8287 0.78 0.3778 

Param 7.329 1 7.3286 6.89 0.0089 

Lang 3.284 1 3.2837 3.09 0.0794 

Flight 3.238 2 1.6188 1.52 0.2192 

Repres*Param 4.903 1 4.9033 4.61 0.0322 

Repres*Lang 0.762 1 0.7615 0.72 0.3979 

Repres*Flight 11.35 3 5.6748 5.33 0.005 

Param*Lang 0.086 1 0.0861 0.08 0.7762 

Param*Flight 22.024 2 11.0121 10.35 0 

Lang*Flight 2.583 2 1.2915 1.21 0.2978 

Error 677.797 637 1.064   

Total 33.779 651    

 Proportional Odds Model 

The proportional odds model is a regression model for ordinal dependent variables, such as the 

risk categories in the survey, where “extremely risky” is riskier than “somewhat risky” but the 

difference between the two categories cannot be numerically quantified. Since respondents could 

choose one of five categories to characterize the risk of the flight, there are four logarithms of the 

odds of answering in certain ways: 

 

ln (
𝑃(𝑌 ≤ 𝑖 + 1)

𝑃(𝑌 > 𝑖 + 1)
) = 𝑎𝑖 + ∑ 𝛽𝑗𝑋𝑗

𝑛

𝑗=1

 (4) 

 

where i = 1, 2, 3, 4, corresponds to the four logarithms, and j = 1, 2, 3, 4, corresponds to the four 

factors as described in the ANOVA in Table 18. The model in Equation 4 has four different 

intercepts but common coefficients (slopes) among the different categories. Table 19 lists the four 

coefficients for the logit function and their corresponding p-values. The proportional odds model 

identified the same factors as the parametric tests that assumed continuous variables.   
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Table 19: The proportional odds model shows that the parameter type and framing language factors 

are significant at the 5% significance level.  The flight does impact the pilot’s risk perception, 
but not at the same level as the parameter type and framing language factors. 

 βi p-value 

β1 (Representation method) 0.0972 0.4930 

β2 (Parameter type) 0.3115 0.0281 

β3 (Framing language) -0.2986 0.0350 

β4 (Flight) 0.1428 0.0944 

 Qualitative Responses 

The word cloud in Figure 23 corresponds to the changes pilots said they would make to an 

upcoming flight in Flight A. The words that appeared most frequently in the responses were 

centerline (83 times), runway (79 times), and wind (69 times). The words proper and speed usually 

went together. Takeoff and rotate/rotation speed also ranked high. Tailwind, crosswind, and RPM 

appeared lower on the list. The changes the pilots suggested mapped to the hazardous states that 

were present in the flight. The word clouds for Flight B and C are shown in Figure 36 and Figure 

37 respectively (Appendix III). 

 

The average likelihood value and maximum likelihood value are the average response and 

maximum response of each pilot out of all their changes to the question How likely are you to 

make these changes to an upcoming flight? respectively. The maximum likelihood value should 

ideally be high if the feedback was effective, because it has motivated the pilot to do something to 

improve their flying on their next flight. The average likelihood value is dependent upon the 

number of changes that the pilot has provided—if they provide one change that they rate high and 

four changes that they rate low, the average likelihood value will be lower than a pilot’s who 

provided one highly-rated change. Both the average and maximum value distributions were similar 

across the three flights and all responses ranked highly. Each pilot suggested changes that they 

were likely to make (4 or 5 on the Likert scale).   
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Figure 23: The respondents to Flight A reported that they would make a total of 411 changes to an 

upcoming flight after reviewing their debrief. 

 Survey Analysis Results and Discussions 

The analysis of the survey has shown that debrief representation affects risk perception, but not 

necessarily willingness to change unsafe behaviors. Overall, respondents appeared to be highly 

motivated to change the behaviors they identified as unsafe, independent of how the information 

was presented to them. Pilots reporting that they are likely to make the changes they reported, 

however, could potentially be a result of self-selection bias, where the pilots who took the survey 

already care about improving their safety. Using scenarios instead of data from flights that the 

pilots have actually flown might have had an impact on how willing the pilots were to recommend 

changes, suggesting that the flight was not entirely safe. All three factors investigated had an effect 

on risk perception, although not for the same flight. Framing language affected risk perception in 

Flight A, whereas parameter type and representation method affected risk perception in Flight B. 

Flight C remained unaffected by all three factors. The discrepancy in how the three factors impact 
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risk perception in different flights may be a function of the risk level of each flight (Flight A is 

riskier than Flights B and C, as discussed in Section 5.2) or the kinds of hazardous states present 

in each flight. An additional survey would be required to investigate the effect of the flight 

characteristics on risk perception.  

 

These results suggest how flight instructors could change how they debrief a student’s flight, based 

on what the instructors want to achieve. Overall, the graphical representation method caused pilots 

to report a lower risk for the same flight, compared to the numerical representation method. If a 

flight instructor wants to encourage a student to practice more, they could take advantage of the 

representation method bias—using numerical representation formats would likely bias the student 

towards perceiving the flight to be riskier and wanting to make more changes to an upcoming 

flight. Similarly, using safety parameters instead of performance parameters can help students 

think more about their risk and how to improve. For example, instead of focusing on how close 

the airspeed is to the appropriate airspeed or manufacturer’s recommendations, the instructor can 

focus on how close the airspeed is to an unsafe situation.  

 

Based on the interaction effects in Table 18, there is at least one more factor that affects risk 

perception. The flight itself affected how pilots were biased by the three factors. The concealed 

factor could be the risk present in the flight (meaning that we should be using different 

representation methods for safer flights than riskier flights) or the specific events in question (e.g., 

perception of airspeed deviations and centerline deviations may be biased differently by the three 

factors).  

 

Lastly, parametric tests such as ANOVA or tests meant for continuous or categorical variables 

may be unreliable when used with ordinal data. However, Likert-scale data displays traits of 

continuous variables and researchers may treat them as such if they consist of five or more 

categories without harm to the analysis, referring to the variable as an ordinal approximation of a 

continuous variable (Sullivan & Artino, 2013). For the purposes of this experiment, all tests 

performed provided similar results in terms of which factors significantly bias pilot risk perception 

and motivation to change, supporting the ordinal approximation of a continuous variable argument.  
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7. CONCLUSION AND FUTURE WORK 

Safety has been at the forefront of the aviation industry ever since its conception. The continuous 

attempts at improving the safety record of flight have made air travel a relatively safe 

transportation mode. When accidents do occur, the lessons learnt are implemented in the rest of 

the fleet as well as future designs. The first fatal powered-aircraft crash in 1908 resulted in the first 

Army pilots wearing helmets, which ensured they would not die in the same way as the one 

historical data point available. However, GA safety still lags, and the expected growth in the 

aviation industry makes improving the safety record imperative.  

 

There are numerous challenges in GA that make reactive safety measures less effective than in 

commercial aviation—the large diversity in the aircraft fleet and equipment, pilot experience, 

training, and qualifications makes it difficult to employ generalized methods across the board. In 

this research, I focused on improving safety by reducing human error through safety-driven debrief. 

Effective safety-driven debrief has to communicate the risk to pilots and motivate them to mitigate 

any unsafe behaviors. A comprehensive treatment to the topic should consider the question What 

is the best way to communicate unsafe behaviors effectively to pilots? To achieve this goal, we 

first need to answer the following two questions 1) Which unsafe behaviors should be 

communicated to pilots? and 2) How do we measure and calculate unsafe behaviors in different 

forms of flight data? 

 

In this research, I addressed the three aforementioned questions. First, I identified unsafe events 

that need to be communicated to pilots by using the NTSB database to create a list of hazardous 

states and triggers. For the purposes of this thesis, I created a list of hazardous states that appear 

in the takeoff phase of flight, which allowed me to have a more bounded list of hazardous states. 

Communicating hazardous states that have appeared in accidents either as causes of the accident 

or as factors ensures that the behaviors I am asking the pilots to correct are in fact unsafe. In this 

research, I identified the factors that appear in takeoff accidents and also mapped them to private 

pilot certification standards (ACS) to create the list of events/unsafe behaviors that should be 

communicated.  
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I then described measurable parameters that can be reasonably mapped to the hazardous 

states during the takeoff phase and developed algorithms to detect them in flight data. This 

research focused on FDR data, although the same techniques can be applied to other sources of 

data, with higher uncertainty in the final outcome. In particular, I calculated wind components at 

takeoff, runway distance remaining (and runway distance used), and deviation from the centerline 

(and distance from the edge of the runway) by combining different sources of data as described in 

the tables of Chapter 3. 

 

The overall research question aims to investigate how to best communicate feedback to pilots, 

based on their flight data. I defined feedback effectiveness based on whether it communicated the 

risk of the situation and whether it motivated pilots to improve their flying by doing something to 

mitigate the unsafe behaviors. To answer this question, I created graphical and 

textual/numerical representations to communicate each hazardous state, both in terms of a safety 

parameter and a performance parameter when applicable. I put these representations in a debrief 

format based on CloudAhoy and created an interactive prototype for a debrief tool to be used in a 

survey. I created and disseminated a survey based on a full-factorial design to evaluate whether 

three factors I chose based on the literature on cognitive biases in risk communication in other 

fields affect feedback effectiveness in aviation. I analyzed the results from 268 responses and 

showed that the feedback representation does affect its effectiveness in terms of risk perception, 

but not when it comes to pilots’ motivation to change. The effect of the three factors is not 

consistent across the three flights. Section 7.1 discusses the limitations of the work and the results, 

and Section 7.2 suggests future work that can mitigate the limitations and advance the research.   

 

As discussed in Chapter 4, the risk communication community has studied how to decrease risk 

among the general public and in our daily lives by helping people take risk seriously—how to 

convince people to use their seat belts in a moving vehicle, quit smoking, not eat raw eggs. In all 

these situations, there are specific actions that the public can take to mitigate the risks, and the 

actions could even be legislated. We therefore have some idea of how to address and prevent 

violations, or decision errors. However, helping people manage risk when the actions don’t consist 

of simple rules, i.e. when the errors are skill-based, is proving to be more difficult, and the literature 

does not address the risks people take in the workplace through their own performance. In the 
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aviation industry, we can apply the research from the literature to help pilots wear their seatbelts, 

use their checklists, and check their fuel before they take off. However, we do not know how the 

way we talk to pilots about their performance and risk affects them. This research identified how 

pilots can be biased by different communication and risk representation methods and showed 

how to uncover information with regards to these biases. 

 Limitations 

There are certain limitations to this work that arise mainly as a result of the survey design. Firstly, 

the post-debrief questions are not mandatory. There is no way of knowing whether respondents 

who chose to not recommend any changes to make are making that choice deliberately or out of 

time constraints. The results were not the same for all flights, suggesting that the flight may be one 

of the factors that affects feedback effectiveness. To eliminate the effect of the flight type on 

feedback, it would perhaps be beneficial to present pilots with feedback on specific states, instead 

of the flight as a whole. While narrowing the survey down to particular states would take away the 

realism of a flight debrief, it would also decrease the number of variables. Other researchers may 

also disagree with the communication factors that I investigated, arguing that other factors may 

also influence feedback effectiveness, but studying more factors simultaneously results in a 

lengthier survey which requires more responses from which to draw conclusions. 

 

Another limitation was the type of survey data collected—Likert-scale data is ordinal and makes 

statistical analysis difficult. Pilots also interpret Likert-scale data independently, and it is not 

possible for researchers to know how the pilots interpreted them. Additionally, even though I 

followed survey design guidelines from the literature in creating the survey for this work, we do 

not know how pilots respond to different kinds of survey questions. For example, pilots were able 

to choose the neutral midpoint in each Likert-scale in the survey. Not having the midpoint as an 

option would have pushed pilots to choose the safe or risky side of the scale.  

 

In general, it is inherently difficult to draw conclusions from the pool of pilots who took the survey, 

because we do not know how they answered the questions. It is possible that respondents 

misunderstood questions or did not truthfully answer, since the questions were not based on their 

own flights. Using focus groups or in-person simulations and questioning would remedy the 
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uncertainty that comes with an anonymous survey, but it would decrease the sample size and 

increase the pilot workload.  

 Recommendations for Future Work 

In this research, I took the first steps towards understanding the cognitive biases that come into 

play when communicating risk-related information to pilots. This section discusses how each of 

the three questions can be further expanded to increase the impact of the work. 

7.2.1 Hazardous States During Other Phases of Flight 

The same techniques can be applied to hazardous states that occur during phases of flight other 

than takeoff. For example, a different set of states is important during a go-around, such as pitch 

attitude, angle of attack, airspeed, aircraft configuration, etc. Applying the work on a different 

phase of flight can show whether the same observations and discussion in Chapter 6 apply to all 

states or if the observations are state-specific. 

7.2.2 Application of State Detection Algorithms to Data of Lower Resolution 

In this thesis, I focused on FDR data, mainly provided from a Garmin G1000 flight deck system. 

As discussed in Chapter 2, it is possible to repeat this work with data of lower resolution, such as 

smartphone data. Data of lower resolution or quality would introduce increased uncertainty in all 

parts of Figure 7 in Chapter 2. Firstly, the lack of some parameters, such as engine RPM or airspeed, 

makes the identification of phases of flight more complicated and less accurate. For example, in 

the takeoff case, I would have to identify the takeoff roll based on altitude (recorded with less 

accurate sensors than the aircraft instrumentation) and forward velocity alone, instead of using 

altitude in combination with engine RPM, pitch attitude, and vertical speed. Then, I would also 

have to detect hazardous states using parameters that I calculate with less accuracy. For example, 

in this thesis I was able to calculate deviation from the runway centerline precisely using G1000 

data. To detect the same hazardous state using smartphone data, I would first have to find an 

approximate takeoff point, and then calculate an approximation to the centerline deviation, which 

could push the flight into a false alarm hazardous state prematurely.  
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The higher uncertainty in the detection of hazardous states could potentially make the pilots less 

likely to believe the debrief and less likely to change their behaviors, so the results of Chapter 6 

may not necessarily still apply with data of lower resolution.  

7.2.3 Investigating How Pilots Respond to Surveys 

In designing the survey for this research, I used literature on survey-biases that is generalized on 

the population as a whole. Guidelines included recommendations for when to use the neutral point 

in Likert scales and the implications of anchoring, among other biases. However, no one has 

investigated whether pilots respond to surveys in the same way as the general population or if they 

are subject to the same kinds of biases.  

 

A different kind of survey, designed to test different survey-taking biases with a control group and 

a number of experimental groups, can shed light on whether pilots are affected by different survey 

design techniques. Some of the factors that this survey can experiment with are scale length (for 

example, a 5-point Likert scale versus a 10-point Likert scale), continuous versus discrete scales, 

and the effect of excluding the neutral point (for example, not including the middle value 3 on a 

5-point Likert scale) on rating scales.  

 

The results of such a survey could help inform and increase the reliability and impact of future 

aviation research that implements other surveys.  

7.2.4 Effect of Demographics 

In this research, I investigated the effect of three communication factors on risk perception and 

motivation to change among all respondents. However, I collected a plethora of demographic 

information through the survey that can be used to investigate whether there are pilot 

characteristics that influence how pilots perceive their risk or understand their debrief. Some of 

these characteristics could be gender, age, flight experience, flight training background (Part 61 

versus Part 141), education level, or occupation.  

 

Using the demographic information collected limits the number of responses that could be 

considered, as a number of pilots stopped taking the survey before reaching the demographic 

questions.  
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7.2.5 Using Simulator Studies in Place of the Survey 

In the survey, I asked pilots to treat the flights they were debriefing as scenarios and pretend they 

were the ones flying, as it is easy to be more critical of a flight when we are not the ones responsible 

for it. Automating the creation of debrief screens and the tool could enable a more real-time 

application of the research, with participants completing a flight on a simulator before looking at 

their own data, answering questions on risk perception and willingness to change behaviors in a 

more realistic way. 
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APPENDIX A. FDR DATA LONG COMPARISON 

Table 20: The G1000 and Avidyne Entegra systems record similar data parameters in their logs 

but sometimes differ in their parameter names or units used.  

Parameter 
G1000 

Parameter ID 
G1000 Units 

Avidyne 

Parameter ID 

Avidyne 

Units 

Time Stamp     timeStamp   

Local Date Lcl Date mm/dd/yyyy mUtcDate mm:dd:yyyy 

Local Time Lcl Time hh:mm:ss mUtcTime hh:mm:ss 

Timezone UTCOfst hh:mm     

Time in Service     minutesInService minutes 

Active Waypoint 

Identifier 
AtvWpt ident mNxWptID   

Distance to Next 

Waypoint 
WptDst nm DistanceToWpt nm 

Bearing to Next 

Waypoint 
WptBrg degrees ActiveBearing degrees 

Estimated Time En 

Route 
    mEteInSeconds seconds 

Latitude Latitude degrees mLatitude degrees 

Longitude Longitude degrees mLongitude degrees 

Altitude AltB feet Baro 
altitude; 

baroCorrectedAlt 
feet 

Altitude Valid     

altitudeValid; 

baroCorrectedAltV

alid 

  

Altitude Bug     AltBug feet 

Barometer Setting BaroA inches baroSetting inHg 

Barometer Setting 

Valid 
    baroSettingValid   

Barometer Bug     mBaroBug inHg 

MSL Altitude AltMSL feet MSL     

Density Altitude     densityAltitude feet 

Density Altitude 

Valid 
    

densityAltitudeVali

d 
  

Outside Air 

Temperature 
OAT degrees C totalTemperature degrees C 

Total Temperature 

Valid 
    

totalTemperatureVa

lid 
  

Indicated Airspeed IAS kt indicatedAirspeed kt 

Indicated Airspeed 

Bug 
    mIasBug kt 
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Parameter 
G1000 

Parameter ID 
G1000 Units 

Avidyne 

Parameter ID 

Avidyne 

Units 

Indicated Airspeed 

Valid 
    

indicatedAirspeedV

alid 
  

Ground Speed GndSpd kt mGroundSpeed kt 

Vertical Speed VSpd fpm altitudeRate fpm 

Altitude Rate Valid     altitudeRateValid   

Vertical Speed 

Indicator Bug 
    mVsiBug fpm 

Pitch Pitch degrees pitch   

Pitch Valid     pitchValid   

Pitch Rate     Pitch Rate degrees/s 

Pitch Rate Valid     Pitch Rate Valid   

Roll Roll degrees roll   

Roll Valid     rollValid   

Roll Rate     Roll Rate degrees/s 

Roll Rate Valid     Roll Rate Valid   

Yaw Rate     Yaw rate degrees/s 

Yaw Rate Valid     Yaw Rate Valid   

Turn Rate     rateofTurn   

Turn Rate Valid     rateofTurnValid   

Lateral Acceleration LatAc G 
lateralAcceleration; 

Lat Accel 
m/s^2 

Lateral Acceleration 

Valid 
    

lateralAcceleration

Valid; Lat Accel 

Valid 

  

Vertical 

Acceleration 
NormAc G Norm Accel m/s^2 

Vertical 

Acceleration Valid 
    Norm Accel Valid   

Longitudinal 

Acceleration 
    Long Accel m/s^2 

Longitudinal 

Acceleration Valid 
    Long Accel Valid   

Heading HDG degrees magHeading   

Heading Bug     mHdgBug degrees 

Magnetic Heading 

Valid 
    magHeadingValid   

Track TRK degrees mGroundTrack degrees 

Voltage 1 volt1; volt2 volts     

Amperage 1 amp1; amp2 amps     

Fuel Flow E1 FFlow gph 

fuelflowL; 

fuelflowR; 

fuelFlowL; 

fuelFlowR 

gph; lbph 
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Parameter 
G1000 

Parameter ID 
G1000 Units 

Avidyne 

Parameter ID 

Avidyne 

Units 

Oil Temperature E1 OilT degrees F 
oilTempL / 

oilTempR 
degrees F 

Oil Pressure E1 OilP psi 

oilPresL / oilPresR 

/ oilPressL / 

oilPressR 

psi 

Manifold Absolute 

Pressure 
E1 MAP Hg 

manPresL; 

manPresR 
inHg 

Engine Rotations per 

Minute 
E1 RPM rpm tachL; tachR rpm 

Engine Percent 

Power 
    

percentPowerL; 

percentPowerR 
% 

Engine Percent 

Torque 
    

engineTorquePerce

ntL; 

engineTorquePerce

ntR 

% 

Turbine Rotations 

per Minute 
    

engineNgPercentL; 

engineNgPercentR 
% 

Propeller Rotations 

per Minute 
    

engineNpPercentL; 

engineNpPercentR 
% 

Inlet Turbine 

Temperature 
    

ittDegCL; 

ittDegCR 
  

Cylinder Head 

Temperature 

E1 CHT1; E1 

CHT2; E1 CHT 

3; E1 CHT4; E1 

CHT5; E1 

CHT6 

degrees F     

Exhaust Gas 

Temperature 

E1 EGT1; E1 

EGT2; E1 EGT 

3; E1 EGT4; E1 

EGT5; E1 

EGT6 

degrees F     

Cool Temperature     
coolTempL; 

coolTempR 
degrees F 

Altitude GPS AltGPS ft wgs     

True Airspeed TAS kt trueAirspeed kt 

True Airspeed Valid     trueAirspeedValid   

Airspeed Trend     airspeedTrend   

Airspeed Trend 

Valid 
    airspeedTrendValid   

  HSIS enum     

Course CRS degrees ActiveCourse degrees 

Desired Course     
mDtkOrBrg; 

DesiredCourse 
degrees 
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Parameter 
G1000 

Parameter ID 
G1000 Units 

Avidyne 

Parameter ID 

Avidyne 

Units 

Navigational 

Frequency 
NAV1; NAV2 MHz VhfFreq   

Primary Navigation 

Source 
    ucPriNavSource   

Communication 

Frequency 
COM1; COM2 MHZ     

Horizontal Course 

Deviation Indicator 
HCDI fsd HdiDeviation % 

Horizontal Course 

Deviation Indicator 

Source 

    HdiSource   

Vertical Course 

Deviation Indicator 
VCDI fsd VdiDeviation % 

Vertical Course 

Deviation Indicator 

Source 

    VdiSource   

Wind Speed WndSpd kt     

Wind Direction WndDr degrees     

Magnetic Variation MagVar degrees     

Automatic Flight 

Control System On 
AfcsOn bool     

* RollM enum     

* PitchM enum     

Roll RollC degrees fdRoll   

Pitch PitchC degrees fdPitch   

GPS Vertical Speed VSpdG fpm     

GPS Fix GPSfix enum GpsHold   

Horizontal Alert 

Limit 
HAL mt HdiDeviationLimit   

Vertical Alert Limit VAL mt VdiDeviationLimit   

* HPLwas mt     

* HPLfd mt     

* VPLwas mt     

Active Annunciators     apAnnunciators   

Logic States     logicStates   

Map Format     mMapFormat enum 

Map Range     mMapRangeIndex   

Flags     
Flags; FlagsL; 

FlagsR; WaasFlags 
  

Saturated     saturated   

Saturated Valid     saturatedValid   
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Parameter 
G1000 

Parameter ID 
G1000 Units 

Avidyne 

Parameter ID 

Avidyne 

Units 

Go/No-go     

GoNogo; 

mpuNoGo; 

iruNoGo; 

magNoGo 

  

Needle Text Type     mNeedleTextType enum 

Dh Alert     mDhAlert   

Synthetic Rate 

Alarm 
    

SyntheticRateAlar

m 
  

Longterm Bias Drift 

Alarm 
    

LongtermBiasDrift

Alarm 
  

Bias Cutout Alarm     BiasCutoutAlarm   
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APPENDIX B. SURVEY 

Data-driven safety feedback as part of 

debrief for General Aviation pilots 
 

Start of Block: Informed Consent 

Dear Aviation Colleague, 

My name is Nicoletta Fala, and I am a Ph.D. candidate working with Prof. Karen Marais at the 

School of Aeronautics and Astronautics at Purdue University. We are seeking your input on post-

flight debrief feedback in this survey. 

The motivation behind this research is the unacceptably high number of general aviation accidents. 

Our overall goal is to use flight data of various sources to help improve general aviation safety. 

We are trying to understand how different kinds of safety feedback affect risk perception among 

general aviation pilots. 

During the survey, you will be asked to review flight data from four flights and answer specific 

questions on the safety of each flight. We will then ask you a few demographic questions. The 

survey should take approximately 20 minutes to complete. During the survey, you will not be able 

to go back to the previous flight safety questions. You will, however, have the opportunity to 

review and change the demographic questions as you wish. You may choose to not answer some 

questions and you may stop the survey at any time without any repercussion to you. If you do not 

wish to complete the survey in one sitting, you may save your progress and return where you left 

off if you use the same computer to re-access the link. No personally identifiable information is 

being asked, analyzed or reported. All responses will be anonymous and in aggregate at the end of 

the study. 

Your participation in this survey is voluntary. You must be at least 18 years old to participate in 

this research. Thank you for your time and your cooperation. Your responses are greatly 

appreciated and will hopefully enable the general aviation community to improve their safety 

record. If you have any questions regarding the survey or the information contained within, please 

feel free to contact the researchers directly either at nfala@purdue.edu or kmarais@purdue.edu.  
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Page Break  

 

RESEARCH PARTICIPANT CONSENT FORM 

 

Data-driven safety feedback as part of debrief for General Aviation pilots 

Principal Investigator: Associate Professor Karen Marais 

School of Aeronautics and Astronautics 

Purdue University 

 

IRB Protocol # 1804020499 

 

What is the purpose of this study? 

This study seeks to evaluate whether data-driven post-flight debrief can be used to impact how 

pilots react to safety information. As a pilot, you can help us answer our research questions by 

evaluating the risk of hypothetical flights that you will have the chance to review. Through this 

research, we hope to come up with recommendations on how to communicate risk to pilots in a 

flight debrief format. 

What will I do if I choose to be in this study? 

If you choose to participate in this survey, you will be asked to review sample debrief screens of 

hypothetical flights. The screens will help you visualize the flight and give you information 

regarding the takeoff phase of each flight. At the end of the survey, we will also ask you some 

demographic questions. 

How long will I be in the study? 

This survey should take you approximately 20 minutes to complete. 

What are the possible risks or discomforts? 

The risk level to participating in this study is minimal, no greater than you would encounter in 

daily life or during the performance of routine psychological exams or tests. Breach of 
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confidentiality is a possible risk, however no identifiable information will be collected during the 

study.  

Are there any potential benefits?   

There are no direct benefits to participating in this study. We believe you will enjoy debriefing 

these flights. In the future, the results of this study may help us make General Aviation safer by 

understanding how to communicate risk better. 

Will information about me and my participation be kept confidential?   

All demographic information and answers to questions are anonymous. We will not be asking for 

or collecting any identifiable information in this survey. All demographic information and answers 

to questions will be kept indefinitely on a hard drive located in Armstrong Hall, for use in future 

research and academic publications.  

The project's research records may be reviewed by departments at Purdue University responsible 

for regulatory and research oversight. 

What are my rights if I take part in this study? 

Your participation in this study is voluntary. You may choose not to participate, or, if you agree 

to participate, you can withdraw your participation at any time without penalty or loss of benefits 

to which you are otherwise entitled. If you decide to stop the survey without finishing, some of 

your responses may still be usable to the researchers. 

Who can I contact if I have questions about the study? 

If you have questions, comments, or concerns about this research project, you can talk to one of 

the researchers. Please contact Prof. Karen Marais at (765) 494-0063 or kmarais@purdue.edu. If 

you have questions about your rights while taking part in the study or have concerns about the 

treatment of research participants, please call the Human Research Protection Program at (765) 

494-5942, email (irb@purdue.edu) or write to:  

  

Human Research Protection Program - Purdue University 

Ernest C. Young Hall, Room 1032 

155 S. Grant St., 

West Lafayette, IN 47907-2114 
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Do you consent to participate in this research project? 

o Yes  (1)  

o No  (2)  

End of Block: Informed Consent 

 

Start of Block: 0.0 

During this survey, you will be presented with three sets of semi-interactive debrief screens for the 

takeoff phase of flight for a Cessna 172. The first set of screens is a tutorial so that you can get 

comfortable with navigating through the different screens. After completing the tutorial, you will 

have a chance to debrief and answer questions on three flights. 

You can obtain more information on the performance of a Cessna 172 here. You can refer back to 

this document as you go through the different screens. During the survey, you will have as much 

time as you need to review the debrief screens, but once you click on "Next" to proceed to the 

questions, you will not be able to return to the debrief. 

When you are ready to take the actual survey, proceed to the next screen. Please remember that 

you will not be able to return to the debrief after clicking "Next." 

 

<<Interactive tutorial version of debrief tool.>> 

 

Thank you for completing the tutorial; you can now move on to reviewing and evaluating takeoffs.  

End of Block: 0.0 

 

  

http://sportysnetwork.com/sportysacademy/wp-content/blogs.dir/3/files/2015/05/C172M-V-Speeds-KTS.pdf%22%20style=%22box-sizing:%20border-box;%20color:%20rgb(0,%20122,%20192);%20text-decoration-line:%20none;%20cursor:%20pointer;%20outline:%20none;%20transition:%20border-color%200.2s;
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Note: The following blocks are repeated three times for three different flights, before moving to 

the demographics block. The questions displayed take the form of the Safety block or the Risk 

block, both of which are included here. Only one questions block is displayed for each flight 

reviewed.  

 

Start of Block: 1.1-1.4 

Review the following takeoff phase of flight as presented in these debrief screens, taking as much 

time as you need. The aircraft involved is a Cessna 172. 

The debrief screens are semi-interactive: Under "Segments Manager," click on "takeoff KOSU 

RWY 27L" to choose the takeoff segment. Then click on each event you want to further investigate 

from the  "takeoff safety information" list on the right. 

When you are ready to answer questions about this takeoff, proceed to the next screen. Note that 

you will not be able to return to the debrief after clicking "Next." 

 

<<Randomized interactive debrief tool.>> 

End of Block: 1.1-1.4 
 

Start of Block: Questions [Safety] 

Given the information presented to you, how safe would you say this takeoff was? 

 Not safe at all Extremely safe 

 

 1 2 3 4 5 
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In this takeoff, which of the following would concern you, if any? 

▢ Centerline deviation  (1)  

▢ Rotation airspeed  (2)  

▢ Engine RPM  (3)  

▢ Takeoff distance  (4)  

▢ Wind  (5)  

 

QS3 Optional comments 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

Page Break  



104 

What changes (up to 5) do you think you could make to an upcoming flight after the information 

presented here, if any? 

o Change 1  (1) ________________________________________________ 

o Change 2  (2) ________________________________________________ 

o Change 3  (3) ________________________________________________ 

o Change 4  (4) ________________________________________________ 

o Change 5  (5) ________________________________________________ 

 

Page Break  

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... Change 

1 Is Not Empty 

How likely are you to make each of these changes to an upcoming flight? 

 Not likely at all Extremely likely 

 

 1 2 3 4 5 

 

${QS3/ChoiceTextEntryValue/1} () 

 

${QS3/ChoiceTextEntryValue/2} () 

 

${QS3/ChoiceTextEntryValue/3} () 

 

${QS3/ChoiceTextEntryValue/4} () 

 

${QS3/ChoiceTextEntryValue/5} () 
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Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... Change 

1 Is Not Empty 

How important do you think each of these changes is to improving safety on takeoff? 

 Not important at all Extremely important 

 

 1 2 3 4 5 

 

${QS3/ChoiceTextEntryValue/1} () 

 

${QS3/ChoiceTextEntryValue/2} () 

 

${QS3/ChoiceTextEntryValue/3} () 

 

${QS3/ChoiceTextEntryValue/4} () 

 

${QS3/ChoiceTextEntryValue/5} () 

 

End of Block: Questions [Safety] 

 

Start of Block: Questions [Risk] 

Given the information presented to you, how risky would you say this takeoff was? 

 Not risky at all Extremely risky 

 

 1 2 3 4 5 
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In this takeoff, which of the following would concern you, if any? 

▢ Centerline deviation  (1)  

▢ Rotation airspeed  (2)  

▢ Engine RPM  (3)  

▢ Takeoff distance  (4)  

▢ Wind  (5)  

 

QS3 Optional comments 

_______________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

Page Break  



107 

What changes (up to 5) do you think you could make to an upcoming flight after the information 

presented here, if any? 

o Change 1  (1) ________________________________________________ 

o Change 2  (2) ________________________________________________ 

o Change 3  (3) ________________________________________________ 

o Change 4  (4) ________________________________________________ 

o Change 5  (5) ________________________________________________ 

 

Page Break  

Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... Change 

1 Is Not Empty 

How likely are you to make each of these changes to an upcoming flight? 

 Not likely at all Extremely likely 

 

 1 2 3 4 5 

 

${QS3/ChoiceTextEntryValue/1} () 

 

${QS3/ChoiceTextEntryValue/2} () 

 

${QS3/ChoiceTextEntryValue/3} () 

 

${QS3/ChoiceTextEntryValue/4} () 

 

${QS3/ChoiceTextEntryValue/5} () 
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Display This Question: 

If What changes (up to 5) do you think you could make to an upcoming flight after the information pr... Change 

1 Is Not Empty 

How important do you think each of these changes is to reducing risk on takeoff? 

 Not important at all Extremely important 

 

 1 2 3 4 5 

 

${QS3/ChoiceTextEntryValue/1} () 

 

${QS3/ChoiceTextEntryValue/2} () 

 

${QS3/ChoiceTextEntryValue/3} () 

 

${QS3/ChoiceTextEntryValue/4} () 

 

${QS3/ChoiceTextEntryValue/5} () 

 

End of Block: Questions [Risk] 
 

Start of Block: Demographics 

You are almost done! We will next ask you some quick demographic questions that will help us 

improve the quality of our analysis.  

 

Page Break  
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QD1 How old are you? 

o 18-24  (1)  

o 25-34  (2)  

o 35-44  (3)  

o 45-54  (4)  

o 55-64  (5)  

o 65 or older  (6)  

 

QD2 What gender do you identify with? 

o Male  (1)  

o Female  (2)  

o Other  (3) ________________________________________________ 

o Do not wish to specify  (4)  
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QD3 What is the highest level of education you have completed? 

o Some high school  (1)  

o High school graduate or equivalent  (2)  

o Some college  (3)  

o 2-year degree  (11)  

o 4-year degree  (12)  

o Master's degree  (13)  

o Doctorate or Professional degree  (14)  

 

QD4 What is your occupation? 

________________________________________________________________ 

 

QD5 What kind of pilot's license do you currently have? 

o No certificate  (1)  

o Student  (2)  

o Sport  (3)  

o Recreational  (4)  

o Private  (5)  

o Commercial  (6)  

o Airline Transport  (7)  
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QD6 Which ratings or endorsements do you currently have? 

▢ Single-engine  (1)  

▢ Multi-engine  (2)  

▢ Instrument  (3)  

▢ Rotorcraft-Helicopter  (4)  

▢ Glider  (5)  

▢ Lighter-than-air  (6)  

▢ Seaplane  (7)  

▢ Tailwheel  (8)  

▢ High altitude  (9)  

▢ High performance  (10)  

▢ Flight instructor  (11)  

▢ Instrument flight instructor  (12)  

▢ Multi-engine flight instructor  (13)  

 

QD7 How many years of flying experience do you have? Round to the nearest year.  

________________________________________________________________ 



112 

 

QD8 Was your flight training under Part 61 or Part 141? 

o Part 61  (1)  

o Part 141  (2)  

o Combination/both  (3)  

o I do not know  (4)  

 

QD9 What kind of avionics do you most frequently use in your flying? 

o Mostly steam gauges  (1)  

o Mostly glass cockpit  (2)  

o I fly both equally frequently  (3)  

 

QD10 How many flight hours do you have logged (approximately)? 

________________________________________________________________ 

 

QD11 How often do you fly? 

o Once a week  (1)  

o 2-7 days a week  (2)  

o Once a month  (3)  

o Once every few months  (4)  

o Rarely/never  (5)  
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QD12 How often do you participate in aviation safety programs and seminars (such as WINGS, 

FAASTeam seminars, AOPA training videos, etc.)? 

o Monthly  (1)  

o 2-3 times a year  (2)  

o Once a year  (3)  

o Once every two years  (4)  

o Never  (5)  

 

QD13 Where is your home airport base? (ICAO identifier or city/state) 

________________________________________________________________ 

 

QD14 Have you used commercial debrief products, like CloudAhoy, before? 

o Yes  (1)  

o No  (2)  

End of Block: Demographics 
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APPENDIX C. SURVEY RESPONSES 

 

 

 

 

 

 

Figure 24: The respondents answered the question "How risky would you say this takeoff was?” 

using a 5-point Likert scale. For Flight A, most respondents opted for a neutral value around the 

center, but ~13% used the extreme values of not risky at all and extremely risky.  
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Figure 25: The respondents in Flight B also congregated around the mid-point, however, many 

more of them (23%) chose the extreme values of not risky at all and extremely risky. The overall 

number of responses decreased for Flight B compared to Flight A. 

 

Figure 26: Most respondents for Flight C also opted for a neutral value around the center, with 

only ~12% using the extreme values of not risky at all and extremely risky. 
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Figure 27: Most respondents said they would make two changes to their flying after reviewing 

their debrief for Flight A. Most of these changes referred to the centerline and the airspeed—pilots 

said they would maintain better rudder control to keep the nose on the centerline, and be more 

patient in waiting until 55 knots to rotate. Some respondents also referred to the wind, takeoff 

distance, and engine RPM, with suggestions to use a different runway, avoid the intersection 

departure, talk to a mechanic to evaluate the engine performance, and potentially abort the takeoff 

because of centerline deviation.  
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Figure 28: Respondents in Flight B said they would make up to three changes at most. Most pilots 

only wrote in one or two changes. Since Flight B had less hazardous states than Flight A, the 

discrepancy in the number of changes is reasonable. The changes in Flight B focused on engine 

issues and rotation airspeed.  
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Figure 29: Changes suggested for Flight C included better directional control, choosing a different 

runway, and rotating at a higher airspeed. Most respondents said they would make up to two 

changes to their flying.  
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Figure 30: Survey respondents could see their flight debrief information graphically (left) or 

numerically (right). The three rows correspond to the three flights the respondents reviewed.  
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Figure 31: Respondents were more likely to do nothing to change the behaviors they identified 

when I presented their debrief to them graphically (left). The frequency of zero changes goes down 

in the numerical case (right).  
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Figure 32: The survey communicated information in terms of performance parameters (left) and 

safety parameters (right).  

  



122 

 

Figure 33: The safety parameter version of the debrief reduced the respondents who opted to 

continue without making any changes in Flight B and C, but increased the “no changes” responses 

in Flight A.  
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Figure 34: The survey asked pilots to rate the risk or safety of the takeoff in the flight they debriefed. 

The Likert-scale was inverted in each case to maintain consistency. 
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Figure 35: The framing language did not consistently affect the number of changes pilots suggested 

in any of the three flights.  
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Table 21: The Scheirer-Ray-Hare test for the risk perception in Flight A identified framing 

language as a main effect and the representation method and parameter type factors as an 

interaction effect.   

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 3426 0.6198 0.43111 

language 1 35420 6.4089 0.01135 

parameter:language 1 747 0.1351 0.71316 

Residuals 264 1436035   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 11623 2.1031 0.14700 

language 1 40009 7.2392 0.00713 

representation:language 1 1395 0.2523 0.61543 

Residuals 264 1422601   

 

y ~ representation + parameter 

representation  1 11623 2.1031 0.14700 

parameter 1 3356 0.6073 0.43582 

representation:parameter 1 31252 5.6548 0.01741 

Residuals 264 1429396   
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Table 22: The Scheirer-Ray-Hare test for the number of changes pilots suggested after debriefing 

their flights in Flight A did not identify any main or interaction effects. 

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 20559 3.6619 0.05567 

language 1 2315 0.4124 0.52077 

parameter:language 1 38 0.0068 0.93425 

Residuals 264 1476124   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 6476 1.15353 0.28281 

language 1 3379 0.60182 0.43789 

representation:language 1 5004 0.89123 0.34514 

Residuals 264 1484178   

 

y ~ representation + parameter 

representation  1 6476 1.1535 0.282811 

parameter 1 20688 3.6848 0.054911 

representation:parameter 1 6257 1.1145 0.291097 

Residuals 264 1465615   
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Table 23: The Scheirer-Ray-Hare test for the risk perception in Flight B identified parameter type 

and representation methods as main effects but no interaction effects.   

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 60657 20.2269 0.00001 

language 1 3 0.0011 0.97337 

parameter:language 1 1211 0.4038 0.52515 

Residuals 191 519904   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 22436 7.4815 0.00623 

language 1 106 0.0354 0.85082 

representation:language 1 274 0.0913 0.76259 

Residuals 191 488855   

 

y ~ representation + parameter 

representation  1 22436 7.4815 0.006233 

parameter 1 59368 19.7970 0.000009 

representation:parameter 1 11117 3.7070 0.054186 

Residuals 191 488855   
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Table 24: The Scheirer-Ray-Hare test for the number of changes pilots suggested after debriefing 

their flights in Flight B did not identify any interaction effects, but did identify parameter and 

representation as significant main effects. 

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 25102 8.6928 0.00319 

language 1 1356 0.4695 0.49321 

parameter:language 1 1568 0.5429 0.46121 

Residuals 191 532177   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 25524 8.8391 0.00295 

language 1 698 0.2419 0.62284 

representation:language 1 2196 0.7606 0.38313 

Residuals 191 531784   

 

y ~ representation + parameter 

representation  1 25524 8.8391 0.002948 

parameter 1 20688 8.3857 0.003782 

representation:parameter 1 6257 1.5725 0.209843 

Residuals 191 505923   

 

  



129 

 

 

 

 

 

 

Table 25: The Scheirer-Ray-Hare test for the risk perception in Flight C identified no main or 

interaction effects.   

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 214 0.07834 0.77956 

language 1 1411 0.51687 0.47218 

parameter:language 1 7110 2.60493 0.10653 

Residuals 185 504366   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 5 0.00177 0.96643 

language 1 1392 0.50986 0.47520 

representation:language 1 3995 1.46383 0.22632 

Residuals 185 507709   

 

y ~ representation + parameter 

representation  1 5 0.00177 0.96643 

parameter 1 214 0.07842 0.77945 

representation:parameter 1 3638 1.33310 0.24825 

Residuals 185 509243   
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Table 26: The Scheirer-Ray-Hare test for the number of changes pilots suggested after debriefing 

their flights in Flight C did not identify any main or interaction effects. 

y ~ parameter + language 

 df Sum Sq. H p-value 

parameter 1 4392 1.57665 0.20924 

language 1 23 0.00826 0.92758 

parameter:language 1 84 0.03025 0.86192 

Residuals 185 519230   

 

y ~ representation + language 

 df Sum Sq. H p-value 

representation  1 6172 2.21543 0.13664 

language 1 698 0.00834 0.92724 

representation:language 1 2196 0.07771 0.78042 

Residuals 185 531784   

 

y ~ representation + parameter 

representation  1 6172 2.2154 0.13664 

parameter 1 4357 1.5640 0.21108 

representation:parameter 1 5966 2.1417 0.14334 

Residuals 185 507234   
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Table 27: The results of the ANOVA on the risk perception responses from Flight A indicate that 

the Framing Language factor likely moved the location of the mean response. The Representation 

Method and Parameter Type factors combined may influence the results. Rows shaded in the 

darker gray correspond to parameters that are significant at the 0.05 significance level, with the 

lighter gray color used to identify rows that came close to the 0.05 significance level.  

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Repres 3.302 1 3.30242 3.34 0.0689 

Param 0.237 1 0.23702 0.24 0.6249 

Lang 6.845 1 6.84477 6.92 0.0090 

Repres*Param 6.980 1 6.98005 7.05 0.0084 

Repres*Lang 0.072 1 0.07184 0.07 0.7878 

Param*Lang 0.426 1 0.42588 0.43 0.5124 

Error 258.245 261 0.98945   

Total 275.478 267    

 

Table 28: The results of the ANOVA on Flight A indicate that there are no main effects or 

interaction effects that impact the number of changes that pilots recommended as a result of their 

debrief. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Repres 1.574 1 1.57392 0.86 0.3544 

Param 5.041 1 5.04114 2.76 0.098 

Lang 0.724 1 0.72436 0.4 0.5296 

Repres*Param 3.306 1 3.30556 1.81 0.1799 

Repres*Lang 2.083 1 2.09344 1.14 0.2867 

Param*Lang 0 1 0.0005 0 0.9869 

Error 477.216 261 1.82841   

Total 490.985 267    

 

Table 29: The results of the ANOVA on the risk perception responses from Flight B differ from 

Flight A’s results. We observe that the Representation Method and Parameter Type factors moved 

the location of the mean response, but the Framing Language factor did not. Rows shaded in the 

darker gray correspond to parameters that are significant at the 0.05 significance level, with the 

lighter gray color used to identify rows that came close to the 0.05 significance level. 

Source Sum Sq.  d.f.  Mean Sq. F Prob>F 

Repres 8.456 1 8.4559 6.92 0.0092 

Param 28.121 1 28.1212 23.01 0.0000 

Lang 0.08 1 0.0805 0.07 0.7978 

Repres*Param 4.719 1 4.7194 3.86 0.0509 

Repres*Lang 0.047 1 0.0472 0.04 0.8445 

Param*Lang 0.045 1 0.0452 0.04 0.8476 

Error 229.772 188 1.2222   

Total 270.995 194    
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Table 30: The results of the ANOVA on Flight B indicate that representation type and parameter 

type impacted the number of changes that pilots recommended as a result of their debrief. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Repres 6.016 1 6.0157 7.86 0.0056 

Param 8 1 8.00033 10.45 0.0014 

Lang 0.167 1 0.1666 0.22 0.6414 

Repres*Param 1.363 1 1.363 1.78 0.1836 

Repres*Lang 0.243 1 0.24281 0.32 0.5739 

Param*Lang 0.866 1 0.86562 1.13 0.2889 

Error 143.882 188 0.76533   

Total 160.595 194    

 

Table 31: As expected, the ANOVA on the risk perception responses from Flight C did not identify 

any parameters that influenced the results. 

Source Sum Sq.  d.f.  Mean Sq. F Prob>F 

Repres 0.012 1 0.01190 0.01 0.9123 

Param 0.150 1 0.14959 0.15 0.6961 

Lang 0.584 1 0.58448 0.60 0.4404 

Repres*Param 1.399 1 1.39905 1.43 0.2331 

Repres*Lang 1.587 1 1.58670 1.62 0.2043 

Param*Lang 2.379 1 2.37943 2.43 0.1205 

Error 177.911 182 0.97753   

Total 184.106 188    

 

Table 32: The results of the ANOVA on Flight C indicate that there are no main or interaction 

effects that impact the number of changes pilots say they would make to an upcoming flight. 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Repres 2.503 1 2.50293 2.00 0.1593 

Param 2.993 1 2.99313 2.39 0.1240 

Lang 0.012 1 0.01215 0.01 0.9217 

Repres*Param 3.130 1 3.13021 2.50 0.1158 

Repres*Lang 0.274 1 0.27442 0.22 0.6404 

Param*Lang 0.120 1 0.12006 0.10 0.7573 

Error 228.142 182 1.25353   

Total 236.550 188    
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Table 33: The distributions of the character length in the total changes suggested are very dispersed, 

with no clear or consistent differences between them for different factors. 

 Changes Character Length 

 Representation Method 

 Graphical Numerical 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 49.6992 48.1149 38 79.75 52.4483 49.0616 42 77.25 

B 35.9780 33.7563 29 54.75 53.3077 43.0121 45.5 47.5 

C 51.1566 44.0732 45 79 54.4906 44.5015 49 48 

 Parameter Type 

 Performance Safety 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 55.6084 51.0366 48 79.75 46.1280 45.2311 31 71.75 

B 37.4752 32.9067 32 55 53.5426 44.8209 47.5 56 

C 48.0968 39.0713 43 66 57.8021 48.4328 50.5 62 

 Framing Language 

 Safety-centric Risk-centric 

Flight Mean 
Standard 
Deviation 

Median IQR Mean 
Standard 
Deviation 

Median IQR 

A 54.8148 47.4199 49 83.75 47.5038 49.5933 31 73.25 

B 46.1584 40.2397 38 66.5 44.2128 39.5643 38.5 48 

C 51.4021 44.3278 44 75 54.7391 44.2989 49.5 53.5 
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Risk Perception Linear Regression 

I ran the full complement of all possible factor combinations to estimate all of the main effects 

between the factors and the results, as well as any interaction effects between factors. The full 

factorial design will have three main effects, three two-factor interactions, and one three-factor 

interaction. To model the response variable, I use a linear regression model of the form of Equation 

5: 

 

𝑌 = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 + 𝛽3𝛸3 + 𝛽12𝛸1𝛸2 + 𝛽13𝛸1𝛸3 + 𝛽23𝛸2𝛸3 + 𝛽123𝛸1𝛸2𝛸3 + 𝜀 (5) 

 

The full factorial design will allow us to estimate all eight βi coefficients {𝛽0, … , 𝛽123}. The terms 

𝛸1𝛸2 , 𝛸1𝛸3 , and 𝛸2𝛸3  represent the possible two-order interactions between variables and 

𝛸1𝛸2𝑋3 represents the three-order interaction.  

 

The next step in the survey analysis was to therefore fit a linear model to the data and determine 

whether any of the coefficients indicate main or interaction effects. I fitted three different models; 

one for each flight, as described by Equation 6. The stepwise linear model started by including all 

coefficients before removing any coefficients that were not significant to the 95% level one by one. 

All X variables are categorical and take values of 1 or 0. 

 

𝑌 = 𝛽0 + 𝛽Rep𝛸Rep + 𝛽Param𝛸Param + 𝛽Lang𝛸Lang + 𝛽Rep:Param𝛸Rep𝛸Param

+ 𝛽Rep:Lang𝛸Rep𝛸Lang + 𝛽Param:Lang𝛸Param𝛸Lang + 𝜀 
(6) 
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Table 34: The linear models did not fit the data very well, but they did indicate which factors affect 

the responses. As expected, the linear model for Flight C only kept the intercept, making it a 

constant model. The linear model for Flight A found all three factors to be relevant as well as an 

interaction effect (F-statistic vs. constant model: 4.25, p-value = 0.00238) and Flight B found 
two of the three factors to have effects, and both of them together produced an interaction 
effect (F-statistic vs. constant model: 11.4, p-value = 6.79e-07).  

Flight 
R2; 

R2(adj)  
RMSE  βi p-value 

95% Confidence 

Interval 

A 
0.0607; 

0.0464 
0.992 

β0 2.63820 1.3125e-53 [2.3742; 2.9022] 

βRep 0.54795 0.0023542 [0.1967; 0.8992] 

βParam 0.38600 0.0203610 [0.0603; 0.7117] 

βLang 0.32130 0.0089993 [0.0809; 0.5617] 

βRep:Param -0.65162 0.0079925 [-1.1317; -0.1716] 

βRep:Lang - - - 

βParam:Lang - - - 

B 
0.152; 

0.138 
1.1 

β0 3.43140 3.717e-55 [3.1283; 3.7344] 

βRep -0.10579 0.641950 [-0.5539; 0.3423] 

βParam -0.45024 0.037758 [-0.8747; -0.0257] 

βLang - - - 

βRep:Param -0.62534 0.048743 [-1.2472; -0.0035] 

βRep:Lang - - - 

βParam:Lang - - - 

C   0.99 

β0 2.93120 3.3654e-95 [2.7892; 3.0732] 

βRep - - - 

βParam - - - 

βLang - - - 

βRep:Param - - - 

βRep:Lang - - - 

βParam:Lang - - - 

Grouped 

Flights 

0.0716; 

0.0571 
1.03 

β0 2.7815 1.3819e-84 [2.5417; 3.0213] 

βRep 0.38193 0.013926 [0.0807; 0.6831] 

βParam 0.26702 0.069301 [-0.0212; 0.5552] 

βLang 0.17049 0.035927 [0.112; 0.3298] 

βF1 0.63261 0.00015847 [0.3057; 0.9595] 

βF2 -0.039223 0.81244 [-0.3637; 0.2852] 

βRep:Param -0.3577 0.027973 [-0.6766; -0.0388] 

βRep:Lang - - - 

βRep:F1 -0.64021 0.00108 [-1.0230; -0.2574] 

βRep:F2 -0.21001 0.28714 [-0.5971; 0.1771] 

βParam:Lang - - - 

βParam:F1 -0.84414 1.6538e-05 [-1.2261; -0.4622] 

βParam:F2 -0.056523 0.7735 [-0.4420; 0.3290] 
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Figure 36: The respondents to Flight B reported that they would make a total of 237 changes to an 

upcoming flight after reviewing their debrief. The pilots referred to proper takeoff speed and power, 

and suggested they would take off with full throttle at a higher RPM, or even abort the flight.  
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Figure 37: The respondents to Flight C reported that they would make a total of 266 changes to an 

upcoming flight after reviewing their debrief. The pilots talked a lot about the runway centerline 

and the crosswind conditions. They also mentioned that the winds favored a different runway and 

that the appropriate wind correction could keep the plane on the centerline.  
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